/\ AUTODESK.

LUNIVERSITY

AS323523
How to document a tower with forty different floor plates?

Maciej Wypych
BVN

Adam Walmsley
Autodesk

Learning Objectives

e Learn how to overcome modeling issues with concept models

e Learn about best practice methodologies for undertaking complex Dynamo
scripting

e Learn how to use the power of computational design to model complex geometries

e Learn about data-management processes with Dynamo

Description

This course will present a case study of a residential tower in Sydney, Australia. A unique design with
completely different floors required a new approach to documentation. Dynamo had been extensively
used to create and manage all the unique elements. More than 45% of all Revit elements were created
using automated workflows. This course will focus on understanding the challenges in automation of
such a vast amount of Revit elements; learning how to choose between an intelligent or brute force
approach; and what we have learned by documenting the same building twice. Understand how a variety
of multiple Dynamo definitions had been used to create specific elements. Learn efficiency differences
between groups and links. The design of a multistory tower can be challenging without every floor being
different. Learn how we overcame this challenge and optimized our workflows to enable multiple design
changes in the process. This class will focus on ways of improving efficiency through automation.

Page 1 of 22

{\ AUTODESK.
UNIVERSITY Autodesk, Inc.

Speakers

]
[

(.‘j. ’I }}. .; i I

Maciej Wypych is a Design Technology Coordinator at BVN. Prior to joining BVN Maciej was a Studio
BIM Manager for Warren and Mahoney in Sydney. Maciej is also a sessional Tutor at University of New
South Wales. He is a committee member and frequent speaker at Dynamo User Group Sydney as well
as BUILT ANZ, Wellington Digital Design User Group and other conferences. He has over 15 years’
experience in the architecture and building industry in Australia and UK.

Adam Walmsley is a Civil Infrastructure Technical Specialist for Autodesk based in Sydney, Australia.
He focuses on enabling the industry to design, document and construct Civil Infrastructure projects using
improved connected workflows. His passion lies in using computational design processes to help
automate and improve design.

Prior to joining Autodesk in April 2019, Adam had worked for 12 years in the structural design and civil
construction industry, holding lead Digital Engineering roles on challenging major projects in Australia.

Page 2 of 22

A AUTODESK.
UNIVERSITY Autodesk, Inc.

Initial model split

Figure 1 Initial model split

Our model was initially created using multiple links. The links included site, typical floor levels, core, interior,
facade and furniture on typical levels. All of these elements were combined in a federated model. We’ve also had
a container model with all families to maintain consistency.

During documentation phase individual models were performing reasonably well, however each of them had
several links loaded in. A team member editing a typical floor would have at least the fagade and the core loaded
in and more often the floor above below and above for reference.

Due to the tight and intense project program, all models were rapidly changing.

This resulted in multiple issues. First, users had to reload other links to coordinate between models. This removed
any speed benefits of this split. Also, continuous changes and reloads resulted in annotation elements dropping
off.

As the project had to be completely redesigned, it was an unique opportunity to change the strategy. This time
we’ve decided to minimize the number of models and use groups to model apartments and other items repeated
across multiple levels

Page 3 of 22

/\ AUTODESK.
UNIVERSITY Autodesk, Inc.

Final model split

We've applied the best practice rules for using

groups to maintain consistency and minimize errors

based on the best practices listed in RevitForum

Planning:

¢ Think carefully and plan how you want to break
up the building into groups. Sometimes it is better
not to put some elements into a group.

¢ Disallow joins in all walls on the outer extent of
the group — use join tool instead

¢ The larger the groups, the slower the file will
perform and the greater the damage if there is a
problem.

¢ The greater the number of instances of a group,
the slower the file will perform.

¢ Preferably have a group that is just the core/floor
containing lift, corridor, facade etc. and then have
groups for each apartment types.

¢ Don’t put the apartment groups in the floor
group.

¢ Don't Exclude items from groups. It’s impossible
to know if it’s intentional.

¢ Be aware that groups do not have a Phase, but
the objects within a group all have their own Phases
— which can vary and can vary across group
instances.

¢ Don’t add elements to groups if they generate

Figure 2 Final model split

warnings
. Don’t use “Fix Groups” option, create duplicates and replace with original.
o Parameters that are not geometric can vary by group instance: Text, URL, Materials, Currency. Make sure

that you select

Isolation:

. Ensure all elements in the group are hosted to the same Level.

. Don’t group elements without the elements they are hosted or constrained to. Eg. put the Doors in the
same group as the Wall they hosted in.

. Don’t pin groups to elements outside the group.

. Don’t pin or lock elements within the group to elements outside the group.

. Ensure no walls are joined to walls outside the group. Use Disallow Join to ensure walls in the group kiss
walls outside the group but do not join them.

. It can be better not to set the Top Constraint of a Wall to be the Level Above. Instead, use the Current

Level plus Unconnected Height as appropriate

Elements:
. Try to avoid using Line-based families.
. Be careful with Face-based families. It may be the case that each Face-Based item must be hosted to an

individual Wall or Reference Plane. In other words, you can host one Face-Based item (eg basin) to a wall, but you
may/will have to create an individual Reference Plane for each other Face-Based items (eg toilet, towel rail etc)
you wish to host to that wall.

Page 4 of 22

/\ AUTODESK.

UNIVERSITY Autodesk, Inc.
. If your groups need to be copied up/down (such as in a multi-level building) then ensure that the vertical
extents of any Reference Plane’s used for Face-Based families (see above) are within a single level’s Floor to Floor
extents so that there is no overlapping when the copying occurs.

. Avoid using WorkPlane-based families in groups. If you must, then ensure that the item or plane they are
hosted to is also in the group.

. Be cautious of putting floors or stairs in groups as copying to new levels can be tricky. If you do have a
floor in the group, don’t lock the floor sketch lines to other objects.

. Be careful if you have a floor waste in a bathroom group: it may lock people out from editing or
dimensioning a concrete setout plan.

. Ensure grouped elements are in the same Workset. Group instances also belong to a Workset — ensure
they are all on the same one.

. When creating families to go into groups, preference should be given to un-hosted objects, although we
do acknowledge that we do use many Face-based items.

. If you are using a family wall, floor or ceiling hosted ensure that host is within the group, otherwise create

and select reference plane or use level as a host

Manipulation:

. Mirroring and rotating groups can be problematic, especially with faced-based families. Check your
results after you have performed an operation. If there is an issue, it can be better to edit the flipped version of
the group and fix the problem there.

. Be careful when you Copy and Paste, or Create Similar as the new elements sometimes don’t end up on
the same host Level. Note also, that you can’t Re-host an element when in the Group Edit mode: you have to
remove it from the group, re-host it and then put it back in the group. This is especially true for Line-based and
Face-based families.

. If you have a nested group with a level problem, you may have to remove it from all the groups it is
hosted into (such as a table and chair group nested into several apartment types), fix the problem and then put it
back into all the other groups.

. One way to check on the group Level problem is to export a group to a new empty file and see what levels
the items end up on. If there are problems, fix then in this new file, delete the excess levels, then replace the
group back in your project.

. Each group has an origin and Revit can sometimes get confused about what Level it is on.

You can find more information in Revit Forum - https://www.revitforum.org/showthread.php/6859-Best-
Practices-for-Groups-in-High-rise-Tower-Models?highlight=groups+tower

Page 5 of 22

A AUTODESK.
UNIVERSITY Autodesk, Inc.

Sync Times (Seconds)

Single Tower Model -

0 100 200 300 400 500 600
B Tower W Site B CAD Underlay
Federated B Podium W Furniture
B Core B Facade B Typical Floors 10-21
B Typical Floors 22-23 B Basement B Interiors
m Container M Typical Floors 36 Typical Floors 40-41

B Typical Floors 37-39 m Typical Floors 24-35 m Typical Floors 4-9
B Typical Floors 42-43 B Typical Floors 42-44

Figure 3 Sync time comparison between multiple models and a single model

When you compare link vs group workflow it’s important to consider synchronization times.

When using the Revit link workflow, each of the individual files will sync faster than one large file of the group
workflow, but you’ll need to open federated file as well as the individual file, then reload and synchronize again.
When using the group workflow, you'll have one large file that will synchronize slightly slower than individual
floor file, however 5 seconds faster than the federated file, and you won’t have to open multiple files and reload.

Page 6 of 22

/\ AUTODESK.
UNIVERSITY

Using Dynamo to create model elements

THE LANDMARK - WORKFLOW
R+ B B+R :':»R G4-B4+R

da” N

N
N :
—\ S
\\ S 7
- -

REVIT MODEL LINES MULTIPLE DYNAMO 19,942 MODEL ELEMENTS 23,508 MODEL ELEMENTS EXCEL DATA FROM
AND EXCEL DATA USED DEFINITIONS USED FOR CREATED OR PLACED PLACED MANUALLY AND CONSULTANTS IMPORTED
TO CREATE TOWER DESIGN EXPLORATION USING DYNAMO FOR REVIT DISTRIBUTED ACCROSS THROUGH DYNAMO TO
CONSTRAINTS INCLUDING: 50 LEVELS INCLUDING 7 POPULATE ELEMENT

+ STRUCTURAL SLABS LEVELS OF BASEMENT PARAMETERS

+ FLOOR FINISHES USING MODEL GROUPS

+ ROOF

+ CLADDING PANELS DYNAMO PLAYER USED TO

CREATE, POPULATE AND
ALIGN 200+ SHEETS.

+ BALCONY DIVIDERS
+ FLOOR UPSTANDS
+ BALUSTRADES

Figure 4 Workflow overview

1. Floors and other elements created using Dynamo

e The process started with creating a set of constrains using model lines and circles to

o 5 S PR define fagade outline, balcony separation and key points defining overall mass.

S SIANT NSNS
3 yif = éw/ﬁ gj .* To help with reducing errors when lines were added or removed, each constrain had
SN A ° . .

SRESE 5 been created using a separate line style
SN s SN
SN E o
NN R e "

:/E\EE o i{i?; Initially points defining the balcony constraints have been selected using the SELECT

RN S e <85 . . .

“f‘fsg?\if = 5 ?j{ MODEL ELEMENTS node, to define groups of points used in NURBS.BYPOINTS node.
ST e e B TR . . - . .
NN .:.,;g;;” However, this was later replaced by Generic Model families and python script with
SN 7 oo RS 5 .

IRNES ;,,ﬁ;i Filtered Element Collector.
NNA
NI, L e S e

o NN F e ST . e
t2§§ R »’2 2 Filtered Element collector allows you to select specific elements based on selected
SINT S TE . o .

i \;§§ = 2 %2 criteria. In this instance the collector selects all elements of

e NI & ..-7: : o
S;«-X\E z e g.{; BUILTINCATEGORY.OST_GENERICMODEL
o BTG A . . .
? B :V‘%é . Then I've used a for loop to iterate through the collector and add location points of
5.2 ~¢ 25 - elements where name equals to “BalconyControls” to a list. Additional for loops are
e K &

o
o

casat getting the Comments and Filter_ID parameters that are used later for grouping
Figure 5 Generic Model points together.
elements as control points and

line constraints

Page 7 of 22

/\ AUTODESK.

UNIVERSITY Autodesk, Inc.

E e

IN[@] == True:

collector = FilteredElementCollector(doc).OfCategory
(BuiltInCategory.05T_GenericModel).WhereElementIsNotElementType
() -ToElements()

i.Name == "BalconyControls™:
gms .append (i)
pnts.append(i.Location.Point.ToPoint()}
& comments=[]

sans & S5
AL gms: ..l..

comments.append(i.LookupParameter (" Comments™) . AsString()) * Pe e
: ! Code Block 1R
36 FilterID=[] Trug; (s cx
i gms: J“ ot 2
FilterID.append(i.LockupParameter(”Filter ID").AsString()) w ol g e
s Nee aliis, e o)
~ flaslse &+ o . o
® & sey @
errarReport = None - % - .‘
1t = P Soes g
40%.8l¢ »

This workflow is more robust than selecting elements using the Select Model
Elements node. If new elements are added they are automatically picked by the
script. Also, if the script is opened and saved in a different active model, the
selection is not affected, like it would be in the ‘traditional’ method.

ENEREERE

I
I

VL

B 1

Figure 6 — Same selection
required a lot of Select
Model Element nodes

The Nurbs curves have been then used to intersect with planes defined by
each level.

This created a list of points on each level defining the curves one each side of
the building. The easiest way of crating smooth curves would be to connect all
of these points using Nurbs curves however, they would be difficult to
document and would have a limited functionality down the track, when
placing Revit elements.

Instead we’ve created a custom definition, that was later on converted into a
python script and eventually a zero touch node, to improve performance.

—

‘_,‘4
e
Sasas

e s vaneas
A AR

T

e s s s s ssd

]

=2 I
]

B

P
SRR
e

=5

ety

L
=

= oA
e e

:
s
&
é

RS A
A

FEREESE.

&
AR A ALl A LR T R
-
4y b

D o

.
l—-—-—-.l-
SRS
rentasbn
e
i
LA VA U
.

22

e
s

Mt
'3

P T

e

A
=il AR S

P e

Figure 7 - Nurbs Curves Intersected
with Level Planes

Page 8 of 22

/\ AUTODESK.

UNIVERSITY Autodesk, Inc.

This definition is taking the first three points to define an initial arc

4

5
0 T2 g 6 7 g
S ——

and connect other points using tangent arcs.

4 5
0 T2 3 6 7 g

o

All of these curves are then combined into a polycurve for each side of the building and a combined polycurve for
the complete outline.

clr.AddReference('ProtoGeometry’)
Autodesk.DesignScript.Geometry

dataEnteringhode = IN
SYSs
pyt_path = r'C:\Program Files (x86)\IronPython 2.7\Lib"
sys.path.append(pyt path)
pnts = IN[@]

errorfeport = None
crvs = []
e pnts:

arcs =[]
al=Arc.ByThreePoints(e[2],e[1].e[2])
arcs.append(al)

ind, i enumerate(e[3:]):

afnd = Arc.ByStartPointEndPointStartTangent({arcs[ind].EndPoint,i,arcs
[ind].TangentAtParameter(1))
arcs.append({afnd)

afnd = Line.ByStartPointEndPoint(arcs[ind].EndPoint,i)
arcs.append(afnd)

crvs.append(PolyCurve.ByJoinedCurves{arcs))
traceback
errorReport = traceback.format_exc()

errorReport == None:
OuT = crvs

OUT = errorReport

Figure 8 - Custom Python script to create smooth PolyCurves from list of points

Page 9 of 22

!,\ AUTODESK.
UNIVERSITY Autodesk, Inc.

Geometry

Autodesk.DesignScript.Geometry.PolyCurve TangentContinuousByPoints(List<Autodesk.DesignScript.Geometry.Point> points)
= 9;
ist<Autodesk.DesignScript.Geometry.Curve> curves = ist<Autodesk.DesignScript.Geometry.curve>();
ch (Autodesk.DesignScript.Geometry.Point pnt in points)

if (i = @)

Autodesk.DesignScript.Geometry.Arc curv = Autodesk.DesignScript.Geometry.Arc.ByThreePoints(points[i], points[i + 1], points[i + 2]);
curves.Add(curv);
i=2;

catch

Autodesk.DesignScript.Geometry.Line curv = Autodesk.DesignScript.Geometry.Line.ByStartPointEndPoint(points[i], points[i + 2]);
curves.Add(curv);

=25

f (1 <= points.Count - 2)

Autodesk.DesignScript.Geometry.Arc curv = Autodesk.Designscript.Geometry.Arc.ByStartPointeEndPointStartTangent(points[i], points[i + 1], curves[i - 2].TangentAtParameter(1));

curves.Add(curv);

i+

Autodesk.DesignScript.Geometry.Line curv = Autodesk.DesignScript.Geometry.Line.ByStartPointendPoint(points[i], points[i + 1]);
curves.Add(curv);

i++;

Figure 9 - Smooth PolyCurve created using a zero-touch node

This outline is being used to create a concrete floor on each level as well as a concreate hob on the parameter of
the floor using the WALL.BYCURVEANDHEIGHT node.

And at the early stages of the design a curtain wall representing the balustrade.

The final balustrade element is being created within Dynamo to allow for a detailed setout of each panel and
fixing elements.

To create the individual floors for floor finishes on balconies, I've used the outline of the main building defined by
a model lines drawn on each typical level. This was then subtracted from the outline of the building alongside
with the placement lines for balcony separation walls.

These sets of outlines have been used to create individual floors using FLOOR.BYOUTLINETYPEANDLEVEL

As each of the balcony separation walls have different lengths, so we’ve created them longer than the maximum

extent of the outline and intersected them with the outline of the floor. This allowed us to get the individual
lengths and apply this as a length parameter to the balcony separation family.

Page 10 of 22

A AUTODESK.
UNIVERSITY Autodesk, Inc.

Part of the fagcade with direct shape families

Part of the fagade is a form curved in two directions. This would be difficult to create using OOTB Revit elements.
To create the form I've used Dynamo to create overall form and individual panels. Panels were created initially as
individual families using the SPRINGS.FAMILYINSTANCE.BYGEOMETRY node. Later on it became apparent that the
combination of the two OOTB nodes, the FAMILYTYPE.BYGEOMETRY and FAMILYINSTANCE.BYPOINT work better than the
Springs node.

Code Block
solidgeometry |solidgeometry.BoundingBox.MinPoint; | >

Code Block

= solids |Autodesk.Solid.ByUnion(solids); |> Familylnstance. ByPoint
FamilyType.ByGeometry 5
familyType Familyinstance
solidGeometry > FamilyType
point
name >
I :
"Cladding”; > / category
Category.ByName("05T_GenericModel"); | = templatePath >
Revit.Material.ByName("Default™); > / .
material >
subcategory >
AUTO

Browse... >

C:\..ARevit_Family_Templates\2018\Generic_Model WM.rft

It’s because you can check if geometry of any of the elements is being repeated and only create a few types. Then
just place the instances. The placement point of the newly created families is the defined by the MINPOINT of the
BounDINGBoX of the family geometry.

The outline was based on the sketch curves of the

. selected floors. To define vertical curvature, detail curves
|-— placed on selected sections were used as a base to create

" solids forms that were cut out of the overall form.

1

SELET

Figure 10 Facade outline indicated in a section view

This form then was used to get heights of the panels. The profiles of the panels were created using detail lines in a
drafting view.
This allowed for easy modification and input from members of the team that were not using Dynamo.

In the initial phases of the project the facade panels have been created as one object. And later split into
individual items for tagging and scheduling.

Page 11 of 22

/\ AUTODESK.

LUNIVERSITY Autodesk, Inc.

Lower parts of the facade are curving not only following the curvature of the floor, but also vertically. To
accommodate this, the variable parts of the profile had to be recreated

PN Profile from Revit

< Profile placement point and
coordinate system based on a circle
drawn in Revit

< N\ Length of lines adjusted within
Dynamo script to align with the outline
of the facade

First, we need to define a profile for the fagade and a placement point. You can draw the profile in any view, using model or
detail lines.

| have used two options of selecting the profile and the circle that defines the placement point.

~_
et foorshape
p.
[==
4 e —
= T ¢ |
[

The circle is selected using the SELECT MoDEL ELEMENTS node, followed by CURVEELEMENT.CURVE to extract the
geometry from Revit element. Then I've used a code block to get the CENTERPOINT from the circle.

Page 12 of 22

/\ AUTODESK.

UNIVERSITY Autodesk, Inc.

Select Model Elements

Change | Elzments

Elements - 265042

For getting profile curves we can use the same method, however in this example I've collected all lines from the
project and filtered a specific line style. This could be helpful if you are constantly modifying your profile and
don’t want to keep selecting new lines every time.

To get the lines we can use All Elements of Category and select Lines as the category.
Then a code block

STYLES =L.GETPARAMETERVALUEBYNAME("LINE STYLE"). NAME;
We are defining styles as a variable that equals to the name of a line style for each line
LIST.CLEAN(STYLES=="PROFILE"?L:NULL,FALSE);

Then we can filter our list using the if statement notation and LisT.CLEAN function.
If the style equals to “Profile” we’re getting the line otherwise is a null value. Then null values are removed using
the LisT.CLEAN with false flag for the PRESERVEINDICES.

Now we can extract the curve geometry using CURVEELEMENT.CURVE and Group Curves from archilab packages to
group connected curves, so we can use Polycuve.ByJoinedCurves to create polycurves.

Get floor shape & place pdints

Code Block

pe |pc.EndPoint; | >

Select Model Elements Springs.Collector.ElementSketch PolyCurve.ByJoinedCurves
Change e element > curves curves @z =y PalyCurve

Elements : 275223 ferchModelCurves > model curves joinTolerance >

refresh > -

auTg

curve 3 Point[]

divisions >

108; -

Next step is to get the outline of the floor. We can use the Select Model Elements to select the floor and
SPRINGS.COLLECTOR.ELEMENTSKETCH node from Springs package to get sketch curves.

To define where the profiles will be placed we can use the CURVE.POINTSATEQUALSEGMENTLENGTH. However, we will
need to add the endpoint of the Polycurve to the list using LIST. ADDITEMTOFRONT node, to get an equal spread of
points.

Page 13 of 22

/\ AUTODESK.

UNIVERSITY Autodesk, Inc.

PolyCurve.ByjoinedCurves

Define coordinate systéms for profile placement

Curve TangentAtParamater

Now we can use the points to create Coordinate systems that will be used to correctly place cladding profiles.

We'll start with converting points to parameters, that will be used later. We’ll use CURVE.PARAMETERATPOINT to do
that. Then we can use the CURVE.TANGENTATPARMATER to get tangents at each point. We'll use them as the Y axis of
the new coordinate systems. We'll use the VECTOR.ZAxis() as the Z axis. Finally, we can use the VECTOR.CROSS

function to get the X axis.

Now, we can plug in the points and the vectors to the COORDINATESYSTEM.BYORIGINVECTORS node to create the

coordinate systems

PolyCurve.ByjoinedCurves

Group Curves
curves 2> PalyCurve

Curves > Grouped Curves R
joinTolerance

auto

o

Code Block

c |c.CenterPoint; >

! !
Transform profile

origin >
Code Blodk
v [v.Reverse(); | >

3
£
i

v v v

Geometry.Transform |

geometry > GEOMETTy r—

CoordinateSystem

e

v |v.Reverse(); | >

xhxis
yhuis

\ 2hxis

v ¥ v

CoordinateSystem.ByOriginVectors /
___._________——-—-“""- arigin > CoordinateSystem

fromCoordinateSystem >

contextCoordinateSystem >

To position profiles on the coordinate systems, we’ll use GEOMETRY. TRANSFORM node. Connect profile curves to the
geometry and coordinate systems to CONTEXTCOORDINATESYSTEM input. For the FROMCOORDINATESYSTEM, we’ll create
COORDINATESYSTEM.BYORIGINVECTORS using the circle center point as origin and reversed VECTOR.XAXiIs() and

VECTOR.ZAXIs() to orient the profile.

Page 14 of 22

{\ AUTODESK.
UNIVERSITY Autodesk, Inc.

| | ! | |
Offset profile to create gaps between
panels

Geometry.Translate

geometry Bz E> Geometry r—

direction 7

distance >

Geometry.Transform

geometry Geometry

fromCoordinateSystem

contextCoordinateSystem >

Geometry.Translate

geometry [E5 B> GEOMELry Pe—

Ofiset Distance
28; >

-4 direction b

distance >

Negative offset

[I | i i / [offset |-offset; | >

prbﬁle placement

Curve.TangentAtParameter

CoordinateSystem.ByOriginVectors)
Origin > CoordinateSystem

whuis

yAxis
zhuis

v vV Vv

Now we can use GEOMETRY.TRANSLATE to create gaps between panels. Use the CURVE. TANGENTATPARAMETER as the
direction. And positive and negative value offset as the distance, to equally offset the profile in both directions.

s between Modif!y list to create pairs of profiles for lofting

Code Block

Geometry.Translate

mesry F_E Geomery

ListShiftindices

We'll need to use LIST.SHIFTINDICIES node to create panels, otherwise the profiles would connect between gaps and
not the panel. Then create a list using two profile lists. Finally, flatten the list and transpose it three times using
different level settings to get lists containing pairs of profiles, which then is used in the SoLip.BYLOFT node.

Page 15 of 22

/\ AUTODESK.

UNIVERSITY Autodesk, Inc.
| ‘ _ ‘ |
~Create solid geometry ' T i i T S
| |
H l l
Create family instances I Z | Z \\ | ' |
== SR e [+
T St I e
i — ;
| isVoid >
1 subcategoryName >
! l
B8 S 8 o e) ooy 1 = 5 1 o =
i |
|
| |
1 |
m O T T T T T T T T U U B
e The newly created list of solids needs to be flattened, so we can use the SoLips.ByUNION

node (unless you want to create panels as individual families)

To create the families we can use the SPRINGS.FAMILYINSTANCE.BYGEOMETRY. You can input
the file path simply as a string or using the FILEPATH node.

Figure 11 Individual panel

Page 16 of 22

/\ AUTODESK.

LINIVERSITY Autodesk, Inc.

Automated dimensioning of curved slabs

To accommodate future changes in the overall form of the building and make the workflow of
documenting all slabs with curved edges, I've had to come up with a more efficient solution.

Unfortunately, Revit API does have it’s limitations for creating dimensions automatically. You can only
create linear dimensions. To accommodate this, the Dynamo definition creates text notes to describe the
Radiuses of arcs at the edges of the slabs.

I Achitecture Stucture Systems Inset Annotate Analyze Massing&Site Collaborate View Manage Add-lns Reviztod (-

| (D BES G- @ = s -
.

‘‘‘‘‘‘
@ Fh- setings @-
Select ~ Settings roject L

Fic Plan:Plan_Working v

Properties x

B Fioor Plan 4
Blan_Working

Floor Plan: L12 - Edit Type

Constraints
Folders

Filter_ID

User_ID

FilterlD_new

FilterlD_deleted

FilterlD_moved

Building 1D i
Graphics 7

N 33.620
E 16.336

Color Schem... Backgroun:
Color Scheme | <none>

Syékarn Color... Edit...

Default Analy... None

Sun Path m]
Underlay

|

100 O@H% K2 5 mimie <
Click ¢ ct, TAB for alternates, CTRL adds, SHIFT unselects. T

= O o -« & x2 Wi oz M 3 I |

Page 17 of 22

A AUTODESK.
UNIVERSITY Autodesk, Inc.

Additionally, the definition, creates spot coordinates at the endpoints of all edges.

Flatten and create a point at the middle
a List.Flatten(a.PointAtParameter(e.s)); |>

Code Block
a |string.Replace(String.Contains(a, "Arc”, true)?"R="+Hath.Round(b.Radius): "Straight" | >

Select Horizontal Text Alignment

~ | Horizontal Alignment

Code Block

"Note 2.0"; |>

TextNoteType ByName
name > TextNoteType

ol

TextNote.ByLocation

Code Block

createlist | [createlist]; | >

Code Block
a | -vector. AngleAboutAxis(a,b,Vector.zaxis()); »
b

alignment

pe
keepRotatedTextReadable

rotation

Code Block

a List.Flatten(a.EndPoint); >

Code Block
Vector.ByCoordinates(e,160,0); [> b
Vector.ByCoordinates(10,100,8) ;)h

fetchModeiCurves

Code Block
false; >
Select Horizontal Grids /
Seezt Elements 2

Nothing selected.

refresh

I've created a Python script to create dimensions. The script gets the floor geometry and creates
dimensions between the endpoint of a floor edge and the nearest grid.

Page 18 of 22

/\ AUTODESK.

UNIVERSITY Autodesk, Inc.

The first part of the script is used to import all required modules. For most of your scripts you can use
pretty much the same modules. It may not elegant coding, but it's a good idea to add your most often
modules to your Python template in Dynamo.

For interacting with Revit you need to import RevitNodes, RevitAPI and RevitAPIUI. If you need to create
any Revit elements, you have to create them inside a transaction. This Requires importing the
DocumentManager and TransactionManager from RevitServices.

clr
clr.AddReference(“RevitNodes™)
clr.AddReference("ProtoGeometry™)
Autodesk.DesignScript.Geometry
clr.AddReference("System")

System.Collections.Generic

Revit
.ImportExtensions(Revit.Elements)

-ImportExtensions(Revit.GeometryConversion)

clr.AddReference("RevitServices™)
RevitServices
RevitServices.Persistence DocumentManager
RevitServices.Transactions TransactionManager

DocumentManager.Instance.CurrentDBDocument

uiapp = DocumentManager.Instance.CurrentUIApplication
app = uiapp.Application
uidoc = DocumentManager.Instance.CurrentUIApplication.ActiveUIDocument
clr.AddReference("RevitAPI")
clr.AddReference('RevitAPIUI')
Autodesk

Autodesk.Revit.DB
Autodesk.Revit.UI

sys

pyt_path = r'C:\Program Files (x86)\IronPython 2.7\Lib"’
sys.path.append(pyt_path)

getDocUnits = doc.GetUnits()
getDisplayUnits = getDocUnits.GetFormatOptions(UnitType.UT_Length).DisplayUnits
unitConversion = UnitUtils.ConvertFromInternalUnits(1, getDisplayUnits)

Page 19 of 22

/\ AUTODESK.

UNIVERSITY Autodesk, Inc.

Next the script defines the inputs for the floor and horizontal and vertical grids.

Create options required for creating dimensions

Get solid of floor element

Get edges of the solid

Discard edges underside of slab

Get Edge start points

Calculate Distance between curve start point and each grid

dataEnteringNode = IN

def ProcessList(_func, _list):
map (x: ProcessList(_func, x) type(x)==1list _func(x), _list)

def UnwrapNestedList(e):
UnwrapElement(e)

isinstance(IN[@], list):
inelements = ProcessList(UnwrapNestedList, IN[@])

inelements = [UnwrapElement(IN[©])]
isinstance(IN[1], list):

hgridcurves = ProcessList(UnwrapNestedList, IN[1])

hgridcurves = [UnwrapElement(IN[1])]

isinstance(IN[2], list):
vgridcurves = ProcessList(UnwrapNestedList, IN[2])

vgridcurves = [UnwrapElement(IN[2])]

errorReport = None
TransactionManager.Instance.EnsureInTransaction(doc)
dimensions=[]
opt = Options()
opt.ComputeReferences=True
opt.IncludeNonVisibleObjects=True
opt.View = doc.ActiveView
element inelements:
geometry = element.get_Geometry(opt)
solid geometry:
edges= solid.Edges
bbx= element.get BoundingBox(doc.ActiveView)
mid = Line.CreateBound(bbx.Min,bbx.Max).Evaluate(2.5,True)

n=(edges.Size-1)/
i, edge enumerate(edges):

edge.Evaluate(1).Z == edge.Evaluate(2).Z
pnt =edge.Evaluate(2)

disth=[]
distv=[]

h hgridcurves:
disth.append(h.Curve.Distance(pnt))

minh = sorted(disth)[@]

v vgridcurves:
distv.append(v.Curve.Distance(pnt))

minv = sorted(distv)[@]

pnt.X >= mid.X:
dirh = 4

dirh = -4

Page 20 of 22

/\ AUTODESK.

UNIVERSITY Autodesk, Inc.

e Create reference for grid at the minimal distance to point
¢ Add items to Reference Array
e Create dimension

pnt.Y >= mid.Y:
dirv = 4

dirv = -4
lh=Line.CreateUnbound(XYZ(pnt.X+dirh,pnt.Y,pnt.Z),XYZ(0,1,2))
h hgridcurves:

h.Curve.Distance(pnt) == minh:
refgh=h

lv=Line.CreateUnbound (XYZ(pnt.X,pnt.Y+dirv,pnt.Z),XYZ(1,0,9))
v vgridcurves:

v.Curve.Distance(pnt) == minv:
refgv=v

elementsRefh=ReferenceArray()
elementsRefv=ReferenceArray()

pntref = edge.GetEndPointReference(?)

elementsRefh.Append(pntref)
elementsRefh.Append(Reference(refgh))
elementsRefv.Append(pntref)
elementsRefv.Append(Reference(refgv))

dimh= doc.Create.NewDimension(doc.ActiveView,lh,elementsRefh)
dimv= doc.Create.NewDimension(doc.ActiveView,lv,elementsRefv)
dimensions.append([dimh,dimv,dirh,dirv])

TransactionManager.Instance.TransactionTaskDone()

traceback
errorReport = traceback.format_exc()

errorReport == None:
OUT = dimensions,mid.ToPoint()

errorReport

Page 21 of 22

A AUTODESK.
UNIVERSITY Autodesk, Inc.

Tips & Tricks

Tip 1: Careful planning of model split will save you time down the track

e Tip 2: Use selection by parameters in Dynamo to maintain consistency

e Tip 3: Groups work well if you follow best practice rules. Make sure that your team
knows them all.

e Tip 4: Make your Dynamo workflows inclusive — Drive Dynamo geometry with
Revit Geometry.

Page 22 of 22

