Using Fusion 360 and metal AM to optimize automotive mold cooling solutions

Jack Holmes & Joe Pike
Technology Consultant | Programme Manager
We may make forward-looking statements regarding planned or future development efforts for our existing or new products and services and statements regarding our strategic priorities. These statements are not intended to be a promise or guarantee of business results, future availability of products, services or features but merely reflect our current plans and are based on factors currently known to us. These planned and future development efforts may change without notice. Purchasing and investment decisions should not be made based upon reliance on these statements.

A discussion of factors that may affect future results is contained in our most recent Form 10-K and Form 10-Q filings available at www.sec.gov, including descriptions of the risk factors that may impact us and the forward-looking statements made in these presentations. Autodesk assumes no obligation to update these forward-looking statements to reflect events that occur or circumstances that exist or change after the date on which they were made. If this presentation is reviewed after the date the statements are made, these statements may no longer contain current or accurate information.

This presentation also contains information, opinions and data supplied by third parties and Autodesk assumes no responsibility for the accuracy or completeness of such information, opinions or data, and shall not be liable for any decisions made based upon reliance on any such information, opinions or data.

Autodesk’s partners frequently compete against each other in the marketplace, and it is critically important that all participants in this meeting observe all requirements of antitrust laws and other laws regarding unfair competition. Autodesk’s long insistence upon full compliance with all legal requirements in the antitrust field has not been based solely on the desire to stay within the bounds of the law, but also on the conviction that the preservation of a free and vigorous competitive economy is essential to the welfare of our business and that of our partners, the markets they serve, and the countries in which they operate. It is against the policy of Autodesk to sponsor, encourage or tolerate any discussion or communication among any of its partners concerning past, present or future prices, pricing policies, bids, discounts, promotions, terms or conditions of sale, choice of customers, territorial markets, quotas, inventory, allocation of markets, products or services, boycotts and refusals to deal, or any proprietary or confidential information. Communication of this type should not occur, whether written, oral, formal, informal, or “off the record.” All discussion at this meeting should be strictly limited to presentation topics.

PLEASE NOTE: AU content is proprietary. Do Not Copy, Post or Distribute without expressed permission.
Agenda

- Intros
- ITL Background
- Project Aim
- Project Steps
 - CFD Simulations
 - Design Iterations
 - Manufacturing
- Conclusions
- Next Steps
- Q&A
Introductions

Jack Holmes

- Technology Consultant at Autodesk, working with customers and partners across all industries to innovate on solutions
- Focus on Fusion 360 manufacturing, including subtractive, additive and machine tool connections
- jack.holmes@autodesk.com

Joe Pike

- Programme manager at Impression Technologies with experience across various automotive sectors for OEM’s including Ford, Jaguar Land Rover, Bentley & McLaren.
- Enables customers to complete projects in quick succession with cradle to grave support.
- J.pike@impression-technologies.com
Impression Technologies Ltd (ITL)
Background & Technology

HFQ is a proven scalable process similar to that of press-hardened steel
HFQ® - The Benefits

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSTAINABILITY</td>
<td>Circular aluminium enabler – up to 95% emissions savings</td>
</tr>
<tr>
<td>COST REDUCTION</td>
<td>> 20% reduction in part cost & tooling</td>
</tr>
<tr>
<td>MASS REDUCTION</td>
<td>20-50% weight saving</td>
</tr>
<tr>
<td>VIRTUALLY NO SPRINGBACK</td>
<td>Dimensional conformance first time</td>
</tr>
<tr>
<td>RETAINED DUCTILITY</td>
<td>Improved energy absorption for crash</td>
</tr>
<tr>
<td>PART INTEGRATION</td>
<td>3 parts to 1: Lower assembly & tooling costs</td>
</tr>
</tbody>
</table>
ITL a Global Automotive Supplier

- **2012**: ITL incorporated
- **2016**: First commercial application
- **2017**: Collaboration with aluminium suppliers
- **2019**: First Tier signed
- **2021**: Tier production capable
- **2022**: Collaboration with aluminium suppliers

- UK production volumes ramp up
- >25 new parts
- >$30m investment
- HFQ lines installed in EU and CN
The Latest -

HFQ Technology & business model is now validated by the mass market

Electric vehicles and sustainability will drive increasing demand

Latest wave of nominations provide springboard for global scale-up

£5m raise to address automotive & aerospace market opportunity
World first - HFQ safety cell on DBX designed for side intrusion & roof crush
Applied Benefits of HFQ Technology versus Cold Forming

- **Integration** of front Header connection, not possible with cold forming
- **Minimum bond flange width**, for improved occupant vision
- **Deep draw capability**, not possible with cold forming
- **Extremely tight** internal bend radii, not possible with cold forming

Utilisation of high strength aluminium to reduce weight - circa 20% versus lower strength cold form grades

- Formed in a single HFQ draw operation to minimise investment
- Negligible springback
Tool Cooling in HFQ

- Uniformity of temperature distribution across the tooling surface is key in ensuring an even quench rate

- By maintaining high cooling rates in the HFQ process we are able to provide parts with substantially better material properties when compared to other technologies

- Limitations in current tooling manufacture methods mean that cool tooling can create additional timing when producing tools for manufacture

- By utilising new methodologies, we can reduce tooling manufacture times as well as incorporate optimal cooling designs.
Project Aim & Feasibility
Project Aim

- Cooled Punch Tool
- Design Optimization
- Additive Technologies
- Alternative Design Techniques
- Comparison of D&M Techniques
Project Feasibility Study

- Attempt to prove out the capability and its functionality
- Tryout an uncooled printed part on ITL's smaller press
- Understand how the additive printed tool material interacts with the aluminum and other processes to improve development
Manufacturing Methods
Manufacturing Methods

Metal Additive Manufacturing

- **High Resolution/Complex Geometry**: Powder Bed Fusion
- **Resolution & Part Complexity**: Powder DED
- **Low Resolution/Simple Geometry**: Metal FFF, Wire DED

Part Size: 1 cm to 10 m
Manufacturing Methods

PBF vs. DED

Powder Bed Fusion (PBF)
- Higher cost solution
- High resolution / complex geometry
- Internal lattice structure

Wire Directed Energy Deposition (DED)
- Lower cost solution
- Low resolution / simple geometry
- Internal cooling channels
Project Process Steps

CFD Simulation
Check current design’s performance

Design Iteration
Edit design, run simulation, iterate

Manufacturing
Produce designs using alternative manufacturing methods

Testing
Test end components performance at ITL’s facility
CFD Simulation

- Autodesk CFD checked heat transfer from current design
- Simulation model defined
- Non-conformal cooling displayed
Design Iterations
DED Designs

Iteration 1
DED Designs

Iteration 2
DED Designs

Iteration 3
DED Designs

Selected Design
Lattice Design
Lattice Design
Manufacturing
Build Preparation

- Design edits required for manufacturability
- Reduce overhangs
- Test pieces ran
Overhang Test Pieces

Test Piece 1:

Test Piece 2:

- 5mm radius
- 5mm, 60 degree overhang to rad
- 5mm, 60 degree overhang to point
- 5mm radius, 45 degree overhang tear drop to rad
Overhang Test Pieces

Test Piece 3:

- 7mm radius
- 7mm radius, 45 degree overhang to 1mm rad
- 10mm radius, 45 degree overhang tear drop to 1mm rad
Design Edits

7mm channels applied:
Design Edits

Excess material:
Design Edits

Vertical setup:
DED Builds

Horizontal Build:
DED Builds

Horizontal Build:

Conclusion – technology with current design & setup not suitable. More optimisation needed
DED Builds

Vertical Build:
DED Builds

Vertical Machined:
Design Edits
Internal Lattice

- Volumetric Lattice tool - Fusion 360 Product Design Extension
Design Edits

Excess material added:
Build Results
Build Results
Machining
Conclusions

Manufacturing Outcomes

- **DED:**
 - Orientation very important
 - Avoid overhangs as much as possible
 - Test as much as possible
 - Can get a working result
 - More accessible solution to achieve result
 - Worse surface finish

- **PBF:**
 - Can achieve more complex geometries
 - Less material required
 - Less accessible solution
 - Testing will determine benefits
Next Steps

- Test parts at ITL
- Compare results
- Laser cut parts

- Compare process v. benefits
- Implement into industry applications
- Review and test material properties to quantify the benefits of the technology
Testing & Knowledge of Outcomes

- Once we have pressed components, we will be in a position to test the material.

- Tensile testing the material allows the ITL tech team to quantify the difference and advancement in final material properties.
Implementation

- By validating the processes within the project between Autodesk and ITL, we have proven that new and future manufacturing techniques benefit HFQ.

- The current software has been critical in proving the theory whilst the hardware has enabled us to trial this on a small scale.

- The fast-paced nature of the automotive industry combined with these manufacturing techniques will allow HFQ to be delivered within prototype timing to production standards.

- Once the hardware/machinery advances in terms of size and cost, we are confident that prototype projects will be in a position to have significant timing reductions whilst maintaining critical material characteristics.
Thanks to

- Rob Bowerman
- Kieran Gill
- Tom Hemans
- Adam Day
- Yogendra Joshi
- James Neville
- Autodesk Technology Centre staff