
	
SD10669		

Applying	Design	Patterns	to	AutoCAD®	.NET	application	
development		
James	Johnson,		
Synergis	Technologies,	LLC,	Sr.	Application	Developer	
	
	

	

Learning	Objectives	
• Understanding	where	and	why	to	use	design	patterns 	
• Applying	design	pattern	code	and	refactoring	existing	code	for	design	patterns	

• How	design	patterns	can	help	you	build	better	applications		

• Have	sample	code	using	design	patterns	that	can	be	immediately	used	in	your	applications.		

	

Description	
Design	patterns	provide	reusable	solutions	to	common	software	issues	that	occur	frequently	when	
doing	software	design.	This	instructional	demo	is	an	introduction	for	.NET	software	developers	on	how	
to	use	design	patterns	in	their	.NET	applications.	There	are	23	common	design	patterns	known	as	the	
Gang	of	four	(GOF)	and	are	often	considered	to	be	the	base	for	other	design	patterns.	This	instructional	
demo	will	discuss	using	and	selecting	the	proper	patterns	in	your	applications.	This	instructional	demo	
will	demonstrate	how	to	use	common	patterns	with	AutoCAD®	plugin	code	samples.	

	

	

	

	

Speaker	
James	Johnson	has	worked	with	CAD	products	for	more	than	25	years	in	many	positions,	from	being	a	
CAD	drafter	to	writing	automation	applications.	In	his	current	position	he	is	doing	CAD	integration	for	
adept	document	management	system.	In	previous	positions	he	used	RealDWG®	to	write	custom	
automation	to	create	AutoCAD	software	drawings	of	industrial	kitchen	equipment,	and	he	worked	at	
Autodesk,	Inc.,	resellers	in	software	development	groups	doing	custom	applications	for	Inventor	software	
and	AutoCAD	software.	He	has	taught	AutoCAD	software	and	AutoCAD	Microsoft	Visual	Basic	software	
classes	while	working	for	resellers,	and	he	was	a	CAD	instructor	at	2	different	community	colleges.	
	
	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 2	

	

Introduction

Design	patterns	referenced	in	this	class	and	supporting	code	samples	are	defined	in	the	book	“Design	
Patterns:	Elements	of	Reusable	Object-	Oriented	Software	(Addison-Wesley)”	by	Erich	Gamma,	Richard	
Helm,	Ralph	Johnson,	and	John	Vlissides	outlines	and	describes	23	commonly	used	design	patterns.	The	
authors	of	that	book	are	commonly	referred	to	as	the	“Gang	of	Four	(GOF)”.		

A	basic	description	of	“Design	Patterns”	is	that	they	are	reusable	software	solutions	to	recurring	
problems	in	application	development.	The	(GOF)	patterns	are	considered	the	foundation	for	other	
patterns	and	are	categorized	into	three	types:		

Creational	Patterns:	Provide	ways	to	instantiate	single	objects	or	groups	of	related	objects.	Defined	
patterns	are	Abstract	Factory,	Builder,	Factory	Method,	Prototype,	and	Singleton.	

Structural	Patterns:	Provide	ways	to	define	relationships	between	classes	or	objects.	Defined	patterns	
are	Adapter,	Bridge,	Composite,	Decorator,	Facade,	Flyweight,	and	Proxy.	

Behavioral	Patterns:	Provide	communication	between	classes	and	objects.	Defined	patterns	are	Chain	
of	Responsibility,	Command,	Interpreter,	Iterator,	Mediator,	Memento,	Observer,	State,	Strategy,	
Template	Method,	and	Visitor.	

There	are	many	other	books,	websites	and	wiki	pages	that	have	furthered	the	definition	of	these	
patterns	and	additional	variations.	Another	book	that	is	highly	recommended	is	“Head	First	Design	
Patterns”	published	by	O’Reilly	and	authored	by	Eric	Freeman	and	Elizabeth	Freeman.	It	uses	Java	as	its	
base	development	language	and	takes	a	lighter	approach	to	learning	design	patterns.	

	

When	looking	into	design	
patterns	they	could	be	
considered	as	“CODE”	level	
implementation	patterns	where	
Architectural	patterns	are	at	a	
solution	level	implementation.	
The	way	that	I	have	began	to	look	
at	it	is	in	this	layered	level	where	
Architectural	styles	(Principles)	
are	at	theory	level,	Architectural	
patterns	are	at	overall	solution	
level	and	design	patterns	are	at	
the	code	level	of	implementation.	

	

	

	

	

	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 3	

	

Getting	Started	
Using	“Design	Patterns”	does	not	require	any	additional	tools	than	used	in	day-to-day	application	
development	or	any	extraordinary	programming	capabilities.	

Using	“Design	Patterns”	will	require	knowledge	of	object-oriented	programming	and	an	understanding	
to	definitions	of	terms	like	data	types,	polymorphism,	interface	and	inheritance.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

The	general	description	of	what	“Design	Patterns”	are	often	refers	to	them	as	reusable	software	
solutions	to	recurring	problems	that	have	been	time	tested.		One	of	the	main	advantages	of	learning	
“Design	Patterns”	is	that	a	developer	needs	to	learn	or	develop	a	better	understanding	of	Object	
oriented	programming	techniques.	

	

	

	

	

	

	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 4	

	

Getting	Started	continued…	
Data	types:	A	programming	classification	identifying	various	types	of	data.	Types	are	defined	for	every	
variable,	constant	and	expression	that	evaluates	to	a	value.	Programs	use	built-in	types	from	the	.NET	
framework	or	referenced	class	libraries	as	well	as	user	defined	types.	

Samples: int iCount = 0;
 bool bCheck = false;
 string pathName = string.Empty;
 string pathFullName = string.Empty;
 RXObject objRXEnt = dbObj;
	

 doSomething doIt = new doSomething();

 public class doSomething
 {
 }

Polymorphism:	A	programming	concept	that	provides	the	ability	of	objects	to	take	on	multiple	types.	
Polymorphism	can	be	static	where	the	response	to	a	function	is	determined	at	compile	time	or	it	can	be	
dynamic	where	it	is	determined	at	runtime.	
Static	Overload	Sample:		

 public class Overloaded
 {
 public void Add(string val1, string val2)
 {
 //do something
 }

 public void Add(int val1, int val2)
 {

 //do Something
 }
 }

public class mainOverload
 {
 public void doOver()
 {
 Overloaded obj = new Overloaded();
 obj.Add("One", "Two");
 obj.Add(1, 2);
 }
 }

Dynamic	Sample	(accomplished	by	method	overriding):		
 public class Base
 {
 public virtual void Show()
 {
 //do Something
 }
 }

Data	types	are	standard	
system	types	(int,	bool,	etc.),	
referenced	API	
types(RXObject)	and	defined	
classes	(dosomething).	

The	ADD	method	is	overloaded,	
with	different	arguments.	

The	Show	method	is	overridden	
from	the	inherited	Base	class.	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 5	

	

 public class Derived : Base
 {
 public override void Show()
 {
 //do something different than Base
 }
 }

public class main
 {
 public void useDerived()
 {
 Base obj = new Base();
 obj.Show();

 obj = new Derived();
 obj.Show();
 }
 }
	
	
	
Inheritance:	An	object	or	class	can	be	based	on	another	object	or	class.	Inheritance	allows	creating	new	
classes	that	reuse,	extend,	and	modify	the	behavior	that	is	defined	in	other	classes.	A	class	that	is	
inherited	is	called	the	base	class,	and	the	class	that	inherits	is	called	the	derived	class.
 public class Shape
 {
 public double width {set; get;}
 public double height {set; get;}
 public double thick {set; get;}
 }
 public interface WeightCalc
 {
 double getWeight(double volume);
 }
 public class Rectangle : Shape, WeightCalc
 {
 public double getVolume()
 {
 return (width * height * thick);
 }
 public double getWeight(double volume)
 {
 return volume * 0.283;
 }
 }	

	

	

	

	

	

The	Shape	class	and	
WeightCalc	interface	are	
inherited	by	Rectangle	class.	

The	first	Show	method	
would	use	the	Base	class	
and	second	show	is	from	
Derived	class.	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 6	

	

Getting	Started	continued…	
	

Interface:	An	interface	contains	the	signatures	of	methods,	properties,	events	or	indexers.	Classes	that	
implement	an	interface	must	implement	the	members	of	the	interface	that	are	specified	in	the	interface	
definition.	

 public interface WeightCalc	
 {
 double getWeight(double volume);
 }

	
	

Encapsulation:	The	process	of	binding	data	members	(variables,	properties)	and	functions	(methods)	
into	a	single	unit.	

 public class Size
 {
 private double _Length = 0;
 public double Length

{
 set

 {
 _Length = value;
 }

 get
 {

 return _Length;
 }

 }
}

	

	

Another	advantage	of	object-oriented	programming	is	the	ability	to	design	for	cod	reuse.	Two	ways	of	
reusing	code	are	with	inheritance	implementation	(IS-A	relationship)	and	with	object	composition	(HAS-
A	relationship).		

	

IS-A	Relationship:	This	can	be	accomplished	with	Class	inheritance	or	Interface	inheritance.	

 public interface auEntity
 {
 void drawEntity();
 }

 public class auCircle : auEntity
 {
 public auCircle()
 {

auCircle	

inherits	from	

auEntity	

WeightCalc	is	an	
interface	with	a	single	
method	getWeight.	

_Length	variable	is	encapsulated	
in	the	Size	class	and	its	value	is	
returned	and	set	with	the	Length	
property.	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 7	

	

 // Construct and collect data
 }
 public void drawEntity()
 {
 //Do entity creation
 }
 }
	
	
	

HAS-A	Relationship:	This	is	done	by	using	instance	variables	that	reference	other	objects.	

 public class MakeEntity
 {
 public auCircle thisEntity;

 public MakeEntity()
 {
 thisEntity = new auCircle();
 //do other data collection and property setting
 thisEntity.drawEntity();
 }
 }

	

	

	

	

	

	

	

MakeEntity	

creates	an	instance	of		

auCircle	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 8	

	

Unified	Modeling	Language		

Each	of	the	following	pattern	has	a	Unified	Modeling	Language	(UML)	class	diagram.	UML	is	a	universally	
accepted	way	of	describing	software	in	diagrammatic	form.	The	diagrams	in	this	handout	use	these	UML	
features.		

	

	

	

	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 9	

	

Understanding	where	and	why	to	use	design	patterns		
Using	Design	patterns	can	shorten	the	development	process	and	help	prevent	issues	that	can	cause	
major	problems.	Getting	started	with	using	design	patterns	should	be	to	learn	and	experiment	with	
implementing	as	many	patterns	as	possible	and	never	approach	a	software	design	with	trying	to	fit	in	
the	use	of	a	particular	design	pattern.			

Creational	Design	Patterns	
Provide	ways	to	instantiate	single	objects	or	groups	of	related	objects.	

• Abstract	Factory	
The	abstract	factory	pattern	is	used	to	provide	an	interface	for	a	group	of	similar	factories	or	
dependent	objects	without	specifying	the	concrete	classes.	The	client	creates	a	concrete	
implementation	of	the	abstract	factory	and	then	uses	the	interface	of	the	factory	to	create	the	
concrete	objects.	The	client	doesn't	know	which	concrete	objects	it	gets	from	the	factories,	
because	it	uses	only	the	interfaces	of	the	products.		
	
Using	an	abstract	factory	pattern	is	a	“super”	factory	that	produces	objects	that	follow	a	general	
pattern	and	at	runtime	the	factory	is	paired	with	concrete	factories	to	produce	objects	that	
follow	the	pattern	of	the	abstract	factory.	
	
The	abstract	factory	pattern	extends	the	factory	design	pattern	that	allows	creating	objects	
without	being	concerned	about	the	actual	classes	of	the	objects	being	created.	
	
Use:	

• Creation	of	independent	system	for	the	representation	of	its	products.		
• Configured	system	with	multiple	family	of	products.	
• Family	of	related	product	objects	to	be	used	together.	
• To	expose	the	interface,	but	not	the	implementation	of	a	class	library	of	products.	

	
Participants:	

• Abstract	Factory	
• Concrete	Factory	
• Abstract	Product	
• Concrete	Product	
• Client	

	
	
	
	
	
	
	
	
	

	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 10	

	

• Builder	
The	builder	pattern	is	used	to	separate	the	creation	of	complex	objects	from	its	representation	
to	enable	the	construction	process	to	create	different	representations.	A	director	class	is	used	to	
control	the	construction	procedure.	
	
The	builder	pattern	builds	the	complex	objects	with	a	step	by	step	process,	an	interface	defines	
the	steps	for	the	Builder	object	and	a	director	class	controls	the	object	creation	process.			
	
When	an	application	needs	to	create	an	object	which	has	to	be	constructed	using	many	
different	objects,	the	client	code	gets	cluttered	with	the	details	of	the	objects	that	need	to	
be	assembled	to	create	the	resulting	object.	
	
The	builder	pattern	defines	a	way	to	separate	the	builder	object	from	its	construction.	The	same	
construction	method	can	create	different	representations	of	the	object.	
	
Use:	

• Creation	of	an	object	that	is	independent	of	its	parts.	
• Construction	to	allow	for	different	representations.	 	 	

	
	 	 Participants:	

• Builder	
• Concrete	builder	
• Director	
• Product	

	
	
	
	
	
	
	
	
	
	

• Factory	Method	
The	factory	method	pattern	is	used	to	defer	instantiation	with	class	constructors	replaced	into	
subclasses.	The	process	of	object	generation	is	abstracted	so	that	the	type	of	the	object	
instantiated	is	determined	at	runtime.	An	interface	is	defined	for	creating	an	object,	but	the	
subclasses	decide	which	class	to	instantiate.		
	
In	the	factory	method	pattern,	the	object	is	created	without	exposing	the	creation	logic	to	the	
client	and	uses	a	common	interface	for	reference	to	created	objects.		
	
The	factory	method	pattern	uses	inheritance,	as	object	creation	is	delegated	to	subclasses	that	
implement	the	factory	method	to	create	objects.		

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 11	

	

	
The	factory	method	pattern	can	make	a	design	a	little	more	complicated,	but	also	makes	it	more	
customizable.		
	
The	factory	method	pattern	is	similar	to	abstract	factory	pattern	but	without	the	emphasis	on	
groups	and	families	of	factories.	
	
Use:	

• The	class	needs	to	create	objects	that	it	cannot	anticipate.	
• The	class	needs	its	subclasses	to	specify	the	objects	it	creates.	
• The	class	needs	to	delegate	the	responsibility	to	subclasses.	

	
	 	 Participants:	

• Product	
• Concrete	Product	
• Creator	
• Concrete	Creator	

	
	
	
	
	
	
	
	
• Prototype	

The	prototype	pattern	is	used	to	instantiate	new	object	by	copying	the	properties	of	an	existing	
object	which	creates	an	independent	copy.	This	is	used	when	the	creating	a	new	object	is	
prohibitive	for	the	application.	
	
Use:	

• To	create	Instances	of	objects	that	are	specified	at	run-time.	
• To	avoid	creation	of	subclasses	in	the	client.	
• To	avoid	creating	a	new	object.	
• To	create	instances	of	a	class	to	manage	the	state	of	the	class.	 	

	 	
	 	 Participants:	

• Prototype	
• Concrete	Prototype	
• Client	

	
	
	
	
	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 12	

	

• Singleton	
The	singleton	pattern	is	used	to	ensure	that	only	one	instance	of	a	particular	class	is	ever	
created	and	provides	access	to	the	object.	All	further	references	to	objects	of	the	singleton	class	
refer	to	the	same	underlying	instance.		
	
This	is	useful	when	only	one	object	is	needed	in	the	application	or	where	multiple	objects	could	
contain	mismatched	property	data.		
	
The	singleton	pattern	is	often	used	in	scenarios	where	it	is	not	beneficial	which	introduces	
unnecessary	restrictions	in	situations	where	a	single	instance	of	a	class	is	not	needed.	
	
Use:	

• There	must	be	only	one	instance	of	a	class.	
• The	instance	needs	to	be	accessible	from	a	known	point	in	the	application.	
• The	instance	needs	to	be	extended	and	clients	can	access	without	code	change.	

	
	 	 Participants:	

• Singleton	
	
	
	
	
	
	
	
	
	
	
	
	

Structural	Patterns	
Provide	ways	to	define	relationships	between	classes	or	objects.	
	
• Adapter	

The	adapter	pattern	is	used	to	convert	the	interface	of	a	class	into	an	interface	the	client	
expects.	It	allows	incompatible	types	to	work	together	by	wrapping	an	existing	class	with	a	new	
interface	that	supports	the	interface	required	by	the	client.	
	
The	adapter	pattern	is	used	when	an	existing	component	may	offer	functionality	that	needs	to	
be	used,	but	its	interface	is	not	compatible	with	the	design	of	the	system	currently	being	
developed.	
	
The	adapter	pattern	can	help	when	reusing	existing	old	components	and	designing	new	
components	for	an	application.	There	are	always	issues	and	things	that	are	not	quite	right	
between	the	old	and	the	new	components.		

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 13	

	

Use:	
• To	use	an	existing	class	that	its	interface	does	not	match	your	needs.	
• To	create	a	reusable	class	to	make	it	compatible.	
• To	adapt	the	interface	of	a	parent	class.	

	
	 	 Participants:	

• Target	
• Client	
• Adaptee	
• Adapter	

	
	
	
	
	
	
	
	
	

• Bridge	
The	bridge	pattern	is	used	to	separate	an	abstraction	from	its	implementation,	providing	a	way	
that	the	implementation	details	can	vary	without	modifying	the	abstraction.	
Use:	

• To	avoid	permanent	binding	between	an	abstraction	and	its	implementation.	
• The	abstraction	and	its	implementation	should	be	extensible	by	sub	classing.	
• Changing	the	implementation	should	have	no	impact	on	its	clients.	
• To	share	an	implementation	among	multiple	objects.	

	
	 	 Participants:	

• Abstraction	
• Refined	Abstraction	
• Implementer	
• Concrete	Implementer	

	
	
	
	
	
	
	
	
	
	
	
	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 14	

	

• Composite	
	The	composite	pattern	is	used	to	compose	objects	into	tree	structures	to	represent	whole-part	
hierarchies.	Composite	lets	clients	treat	individual	objects	and	compositions	of	objects	
uniformly.	
Use:	

• To	represent	part-whole	hierarchies	of	objects.	
• To	treat	all	objects	in	the	structure	uniformly.	

	
Participants:	

• Component	
• Leaf	
• Composite	
• Client	

	
	
	
	
	
	
	
	
	
	
	
	

• Decorator	
The	decorator	pattern	is	used	to	attach	additional	responsibilities	to	an	object	dynamically	or	
alter	the	functionality	of	objects	at	runtime	by	wrapping	them	in	an	object	of	a	decorator	class.	
This	provides	a	flexible	alternative	to	using	sub-classing	or	inheritance	to	modify	behavior.	
	
Use:	

• To	add	responsibilities	to	objects	dynamically	and	transparent.	
• Ability	to	remove	added	responsibilities.	
• When	extending	by	sub	classing	is	not	possible	or	impractical.	

	
Participants:	

• Component	
• Concrete	component	
• Decorator	
• Concrete	decorator	

	
	
	
	
	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 15	

	

• Facade	
	The	facade	pattern	is	used	to	define	a	unified	interface	to	a	set	of	interfaces	in	a	subsystem.	
Facade	wraps	a	complicated	subsystem	with	a	simpler	interface	that	makes	the	subsystem	
easier	to	use.	
	
Use:	

• To	create	a	complex	system	easier	to	use	and	understand.	
• To	make	a	system	library	more	readable	
• To	add	layers	to	a	sub	system.	

	
	 	 Participants:	

• Façade	
• Sub	System	classes.	

	
	
	
	
	
	
	
	
	
	
	
• Flyweight	

The	flyweight	pattern	is	used	for	sharing	to	support	large	numbers	of	fine-grained	objects	
efficiently.	
	
Use:	

• For	applications	that	have	many	objects.	
• Minimize	memory	usage	by	sharing	data	with	objects.	
• Groups	of	objects	can	be	defined	with	shared	objects	
• Application	is	not	dependent	on	object	identity.	

	
	 	 Participants:	

• Flyweight	
• Concrete	Flyweight	
• Unshared	Concrete	

Flyweight	
• Flyweight	Factory	
• Client	

	
	
	
	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 16	

	

	
• Proxy	

The	proxy	pattern	is	used	to	provide	a	surrogate	or	placeholder	object	to	control	access	to	it.	
The	proxy	pattern	provides	an	extra	level	of	indirection	to	support	distributed,	controlled,	or	
intelligent	access.	
	
The	proxy	design	pattern	provides	a	way	to	create	a	wrapper	class	to	provide	a	simple	interface	
to	existing	objects.	The	proxy	wrapper	class	can	be	used	for	adding	additional	functionality	to	an	
existing	object	without	changing	the	code	of	the	existing	object.	
	
Use:	

• Add	control	of	security	to	an	existing	object.	
• Making	complex	objects	easier	to	access.	
• To	provide	an	interface	for	a	remote	resource.	
• To	create	extensive	memory	objects	on	demand.	
• Add	thread-safety	to	an	existing	class.	

	
	 	 Participants:	

• Proxy	
• Subject	
• Real	Subject	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 17	

	

Behavioral	Patterns	
Provide	communication	between	classes	and	objects.	
	
Behavioral	object	patterns	use	composition	instead	of	inheritance	and	behavioral	class	patterns	use	
inheritance	between	classes,	examples	of	behavioral	class	patterns	are	the	“Template	Method”	and	
“Interpreter”.	
	
	
• Chain	of	Responsibility	

The	chain	of	responsibility	pattern	is	used	to	avoid	coupling	the	sender	of	a	request	to	its	
receiver	by	giving	more	than	one	object	a	chance	to	handle	the	request.	Chain	the	receiving	
objects	and	pass	the	request	along	the	chain	until	an	object	handles	it.	
	
Use:	

• When	more	than	one	object	can	handle	a	request.	
• To	issue	a	request	to	an	object	without	specifying	the	receiver.	
• Objects	to	receive	a	request	are	specified	dynamically.	
• When	loose	coupling	of	objects	is	desired.	

	
	 	 Participants:	

• Handler	
• Concrete	Handler	
• Client	

	
	
	
	
	
	
	
	

	
• Command	

The	command	pattern	is	used	encapsulate	a	request	as	an	object,	thereby	letting	you	
parameterize	clients	with	different	requests,	queue	or	log	requests,	and	support	undoable	
operations.		The	command	may	then	be	executed	immediately	or	held	for	later	use.	
	
A	command	method	can	also	be	thought	of	as	a	Transaction	or	Action	pattern.	
	
Use:	

• Parameterize	objects	by	the	command	to	be	performed.	
• Object	Oriented	replacement	for	callbacks.	
• Execute	requests	at	different	times	or	setup	queues.	
• Allows	creating	an	undo	

	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 18	

	

	 	 Participants:	
• Command	
• Concrete	Command	
• Client	
• Invoker	

	
	
	
	
	
	
• Interpreter	

The	interpreter	pattern	is	used	to	define	a	representation	for	a	language	or	notations	grammar	
with	an	interpreter	that	uses	the	representation	for	instructions	to	interpret	sentences	in	the	
language	or	notation.	
	
Use:	

• To	interpret	grammar,	best	used	when	the	grammar	is	simple.	
• Best	when	efficiency	is	not	a	critical	concern	
• Used	with	specified	query	languages	like	SQL	

	
	 	 Participants:	

• Abstract	Expression	
• Terminal	Expression	
• Nonterminal	Expression	
• Context	
• Client	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 19	

	

• Iterator	
The	iterator	pattern	is	used	to	provide	a	way	to	access	the	elements	of	an	aggregate	object	
sequentially	without	exposing	its	underlying	representation.	
	
Use:	

• Access	an	objects	contents	without	exposing	its	underlying	representation.	
• Provide	an	interface	to	traverse	the	objects	structure.		

	
Participants:	

• Iterator	
• Concrete	Iterator	
• Aggregate	
• Concrete	Aggregate	

	
	
	
	
	
	
	
	
	
	
• Mediator	

The	mediator	pattern	is	used	to	define	an	object	that	encapsulates	how	a	set	of	objects	interact.	
Mediator	promotes	loose	coupling	by	keeping	objects	from	referring	to	each	other	explicitly,	
and	it	lets	you	vary	their	interaction	independently.	
	
Use:	

• When	objects	communicate	to	simplify	the	understanding	of	the	dependencies.	
• To	reuse	an	object	that	communicates	with	other	objects.	
• To	distribute	a	behavior	between	classes	without	sub	classing.	

	
Participants:	

• Mediator	
• Concrete	Mediator	
• Colleague	classes	

	
	
	
	
	
	
	
	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 20	

	

• Memento	
The	memento	pattern	is	used	to	capture	and	externalize	the	current	state	of	an	object's	internal	
state	and	store	it	in	such	a	manner	that	it	can	be	restored	at	a	later	time	without	breaking	the	
rules	of	encapsulation.	
Use:	

• The	state	of	an	object	needs	to	be	saved	so	that	it	can	be	restored	later.	
• When	obtaining	the	state	would	expose	the	implementation.	

	
Participants:	

• Memento	
• Originator	
• Caretaker	

	
	
	
	
	
	
	

• Observer	
The	observer	pattern	defines	a	one-to-many	dependency	between	objects	so	that	when	one	
object	changes	state,	all	its	dependents	are	notified	and	updated	automatically.	
Use:	

• When	an	abstraction	has	two	aspects	and	they	are	dependent	on	each	other.	
• When	an	object	changes	and	multiple	objects	need	to	be	notified	or	changed.	
• When	objects	need	to	notify	other	objects.	

	
Participants:	

• Subject	
• Observer	
• Concrete	Subject	
• Concrete	Observer	

	
	
	
	
	
	
	
	
	
	
	
	
	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 21	

	

• State	
The	state	pattern	is	used	to	alter	the	behavior	of	an	object	when	its	internal	state	changes.	The	
object	will	appear	to	change	its	class.	The	pattern	allows	the	class	for	an	object	to	apparently	
change	at	run-time.	
Use:	

• When	an	object	depends	on	its	state	and	the	state	changes	at	run-time.	
• To	treat	the	object’s	state	as	an	independent	object.	

	
Participants:	

• Context	
• State	
• Concrete	State	Sub	Classes	

	
	
	
	
	
	
	
	
	

• Strategy	
The	strategy	pattern	defines	a	family	of	algorithms,	encapsulate	each	one,	and	make	them	
interchangeable.	The	strategy	pattern	lets	the	algorithm	vary	independently	from	the	clients	
that	use	it.		It	captures	the	abstraction	in	an	interface	and	hides	the	implementation	details	in	
derived	classes.	
Use:	

• When	a	class	needs	to	be	configured	for	multiple	behaviors.	
• When	different	variations	of	an	algorithm	are	required.	
• To	avoid	exposing	complex	structures.	
• When	many	conditionals	are	required	they	can	be	moved	into	a	strategy	class.	

	
Participants:	

• Strategy	
• Concrete	Strategy	
• Context	

	
	
	
	
	
	
	
	
	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 22	

	

• Template	Method	
The	template	method	pattern	is	used	to	define	the	skeleton	of	an	algorithm	in	an	operation,	
deferring	some	steps	to	client	subclasses.	The	template	method	lets	subclasses	redefine	certain	
steps	of	an	algorithm	without	changing	the	algorithm's	structure.		
Use:	

• To	implement	an	algorithm	and	let	the	sub	classes	implement	the	behavior.	
• To	avoid	code	duplication	in	sub	classes.	
• To	control	sub	class	extensions.	

	
Participants:	

• Abstract	Class	
• Concrete	Class	

	
	
	
	
	
	
	

• Visitor	
The	visitor	pattern	is	used	to	represent	an	operation	to	be	performed	on	the	elements	of	an	
object	structure.	The	visitor	pattern	allows	defining	a	new	operation	without	modifying	the	
operating	classes.	
Use:	

• To	operate	on	objects	of	an	object	structure	that	depend	on	other	classes.	
• To	define	related	operations	in	a	single	class	to	keep	them	together.	
• When	classes	defining	objects	rarely	change.	

	
Participants:	

• Visitor	
• Concrete	Visitor	
• Element	
• Concrete	Element	
• Object	Structure	

	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 23	

	

Applying	design	pattern	code	and	refactoring	existing	code	for	design	patterns		

When	starting	a	new	project	it	would	be	good	practice	to	setup	and	design	using	design	patterns,	but	
often	projects	evolve	from	some	test	code	or	existing	code	that	often	does	not	use	design	patterns.	
Also,	it	is	seldom	beneficial	to	start	a	project	with	the	attitude	that	it	will	be	structured	with	a	parrticular	
set	of	design	patterns.	This	approach	will	often	be	unsucessful	due	to	too	much	effort	required	to	make	
a	desired	pattern	fit	in	unknown	code.	It	is	often	better	to	design	the	code	in	the	same	way	that	you	
have	always	worked	and	then	refactor.	As	design	patterns	are	used	more	often	in	the	code,	they	
become	easier	to	implement.	
	

To	refactor	code	to	use	a	design	pattern	is	no	different	than	refactoring	other	existing	code	that	needs	
cleanup	or	added	functionality.	The	primary	difference	is	in	building	the	structure	to	fit	within	the	
desired	pattern.	To	do	this	requires	a	good	understanding	of	object	oriented	programming	and	of	the	
patterns	that	are	being	used.	

	

After	spending	some	time	learning	different	design	patterns,	the	approach	to	refactoring	existing	code	
should	be	the	same	as	with	any	refactoring	is	to	break	the	code	into	simpler	classes	and	methods,	then	
determine	what	design	pattern	best	suits	for	a	solution.	Then	build	the	generic	framework	of	the	
selected	design	pattern	and	move	the	existing	code	into	the	new	structure.	

When	to	use	design	patterns?	

This	is	a	difficult	question	to	answer,	since	different	patterns	have	different	uses	it	would	require	
understanding	the	different	patterns	and	the	existing	code.	Typically	when	something	is	being	done	
requiring	a	lot	of	conditions	there	are	several	design	patterns	that	can	be	used.	Also,	if	the	project	is	not	
reusing	code	or	typical	code	is	being	replicated	there	are	several	patterns	that	could	simplify	reuse	of	
code.	

How	to	learn	the	different	design	patterns?	

To	learn	different	design	patterns	requires	a	lot	of	time,	there	are	several	websites	with	code	samples	
and	definitions.	The	above	descriptions	of	the	patterns	were	derived	from	several	websites	and	the	
Design	patterns	book	mentioned	above.	Would	suggest	taking	a	few	patterns	that	fit	the	type	of	code	
that	you	typically	do,	learn	them	and	use	them	wherever	they	apply,	then	keep	expanding	learning	new	
patterns.	

Why	would	I	change	existing	code	to	use	design	patterns?	

The	main	reason	to	refactor	existing	code	is	for	readability	and	reuse.	As	the	code	is	refactored	to	take	
advantage	of	design	patterns	it	will	be	easier	to	maintain	and	add	additional	functionality.	Keep	in	mind	
one	of	the	main	aspects	of	design	patterns	which	is	:	“Design	patterns	are	ways	to	write	well	defined	
solutions	to	problems	that	someone	else	has	solved”.	
	

	

	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 24	

	

How	design	patterns	can	help	you	build	better	applications		
Design	patterns	provide	defined	structures	that	assist	in	solving	problems.	When	working	on	a	solution	
for	a	problem,	there	are	many	variations	that	need	to	be	considered	for	the	solution	to	problems	to	
determine	a	design	pattern	that	fits.	The	problem	will	often	need	to	be	broken	into	smaller	parts	to	find	
a	solution	using	a	design	pattern.	Learning	design	patterns	is	an	important	step	to	building	better	
applications	due	to	the	time	tested	solutions	that	design	patterns	provide.		
	
Design	patterns	provide	a	common	vocabulary	and	improve	code	readability	for	developers	that	are	
familiar	with	the	patterns	making	maintenance	and	adding	functionality	easier	and	faster.	In	the	
development	process,	if	a	developer	wants	to	use	a	particular	design	pattern	for	a	problem	there	is	a	
common	point	of	reference	to	discuss	if	it	will	solve	the	problem	without	implementing	the	solution	
first.	Programmers	and	developers	encounter	problems	and	have	used	design	pattern	'solutions'.		
	
Design	Patterns	the	good:	

• Readability:	Using	design	patterns	creates	code	that	is	more	understandable	to	all	developers	
who	have	taken	the	time	to	learn	design	patterns.	The	code	is	easier	to	understand	due	to	
design	patterns	being	defined	with	standard	object-oriented	programming	techniques	instead	of	
each	developer	doing	it	in	his	own	way	that	often	does	not	use	well	defined	techniques.	

• Maintainability:	Using	design	patterns	makes	the	code	easier	to	maintain	because	it	is	more	
understandable	and	again	will	use	standard	object-oriented	programming	techniques.	This	
makes	changing	and	adding	additional	functionality	much	easier.	

• Communication:	Design	patterns	provide	a	common	vocabulary	and	assist	in	communicating	
design	goals	amongst	different	programmers	and	developers.	

• Intention:	The	code	is	easier	to	understand	when	another	programmer	or	developer	is	learning	
the	code.	

• Re-use:	Using	common	solutions	to	common	problems	can	assist	in	making	the	code	easier	to	
use	for	other	solutions.	Design	patterns	can	help	prevent	small	problems	that	can	become	major	
problems.	

• Less	code:	Code	can	be	derived	for	common	functionality	from	common	base	classes.	
• Time	Tested:	They	have	been	used	and	tested	to	provide	proven	and	sound	solutions.	

Design	patterns	the	bad:	
• Levels	of	indirection:	Many	design	patterns	provide	extra	levels	of	indirection	making	the	code	

more	complex	and	result	in	the	code	not	being	more	readable	and	maintainable.	
• Learning:	As	with	other	programming	techniques,	learning	when	and	how	to	use	design	patterns	

can	take	some	effort.	When	learning	design	patterns,	they	are	often	abused	and	used	where	
they	do	not	fit.	Sometimes	simple	tasks	do	not	require	the	extra	work	of	being	solved	by	using	a	
design	pattern.	

• Interpretations:	In	the	learning	process	and	from	misunderstanding	the	usage	of	design	
patterns	can	be	interpreted	in	different	ways	and	can	result	in	a	usage	that	is	not	a	good	fit.	

• More	Code:	Some	design	patterns	require	multiple	layers	of	sub	classing	and	can	sometimes	
result	in	extra	code	being	required	to	satisfy	the	requirements	of	using	the	design	pattern.	

• Wrong	Use:	A	good	example	is	that	the	singleton	pattern	is	often	used	when	a	static	class	or	
variable	would	be	acceptable.	As	with	other	techniques	in	an	effort	to	use	a	newly	learned	
technique,	some	programmers	and	developers	will	use	design	patterns	where	they	may	not	fit.	

Applying	Design	Patterns	to	AutoCAD®	.NET	application	development	

	
	 25	

	

Have	sample	code	using	design	patterns	that	can	be	immediately	used	in	your	applications.		
Please	download	the	applications	that	have	been	uploaded	to	support	this	class.	

They	are	C#	applications	to	illustrate	using	different	design	patterns	for	AutoCAD	plugins.		

	

	

	

Design	pattern	links	used	for	reference	to	create	this	document.	
The	following	links	were	used	in	creating	this	document	and	provide	good	reference	for	learning	design	
patterns.	

	

Samples	and	descriptions:	

https://en.wikipedia.org/wiki/Design_Patterns	

https://sourcemaking.com/design_patterns	

http://www.dofactory.com/net/design-patterns	

http://www.blackwasp.co.uk/GofPatterns.aspx	

http://code.tutsplus.com/articles/a-beginners-guide-to-design-patterns--net-12752	

	

		

	

