,?< AUTODESK UNIVERSITY 2015
/

SD10669

Applying Design Patterns to AutoCAD® .NET application
development

James Johnson,
Synergis Technologies, LLC, Sr. Application Developer

Learning Objectives
¢ Understanding where and why to use design patterns

* Applying design pattern code and refactoring existing code for design patterns
¢ How design patterns can help you build better applications

* Have sample code using design patterns that can be immediately used in your applications.

Description

Design patterns provide reusable solutions to common software issues that occur frequently when
doing software design. This instructional demo is an introduction for .NET software developers on how
to use design patterns in their .NET applications. There are 23 common design patterns known as the
Gang of four (GOF) and are often considered to be the base for other design patterns. This instructional
demo will discuss using and selecting the proper patterns in your applications. This instructional demo
will demonstrate how to use common patterns with AutoCAD® plugin code samples.

Speaker

James Johnson has worked with CAD products for more than 25 years in many positions, from being a
CAD drafter to writing automation applications. In his current position he is doing CAD integration for
adept document management system. In previous positions he used RealDWG® to write custom
automation to create AutoCAD software drawings of industrial kitchen equipment, and he worked at
Autodesk, Inc., resellers in software development groups doing custom applications for Inventor software
and AutoCAD software. He has taught AutoCAD software and AutoCAD Microsoft Visual Basic software
classes while working for resellers, and he was a CAD instructor at 2 different community colleges.

Applying Design Patterns to AutoCAD® .NET application development

Introduction

Design patterns referenced in this class and supporting code samples are defined in the book “Design
Patterns: Elements of Reusable Object- Oriented Software (Addison-Wesley)” by Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides outlines and describes 23 commonly used design patterns. The
authors of that book are commonly referred to as the “Gang of Four (GOF)”.

A basic description of “Design Patterns” is that they are reusable software solutions to recurring
problems in application development. The (GOF) patterns are considered the foundation for other
patterns and are categorized into three types:

Creational Patterns: Provide ways to instantiate single objects or groups of related objects. Defined
patterns are Abstract Factory, Builder, Factory Method, Prototype, and Singleton.

Structural Patterns: Provide ways to define relationships between classes or objects. Defined patterns
are Adapter, Bridge, Composite, Decorator, Facade, Flyweight, and Proxy.

Behavioral Patterns: Provide communication between classes and objects. Defined patterns are Chain
of Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer, State, Strategy,
Template Method, and Visitor.

There are many other books, websites and wiki pages that have furthered the definition of these
patterns and additional variations. Another book that is highly recommended is “Head First Design
Patterns” published by O’Reilly and authored by Eric Freeman and Elizabeth Freeman. It uses Java as its
base development language and takes a lighter approach to learning design patterns.

When looking into design

patterns they could be B S B B

. “ ” e . ~ REST (Representational State Transfer)
considered as “CODE” level ~~Architectural styles A T i)
implementation patterns where / Ei’a".ii'iéf’%‘shse?,”’s%fﬁ%%
Architectural patterns are at a T S
solution level implementation. "~/ Architectural Patterns N s e
Th e Way that I h ave bega n tO IOO k \([E)escrib[es t:ﬂe\/fgg&\\%el ;c\;/ltl/t’i:n used for implementation. \ Model View ViewModel (MVVM) Pattern

\ xamples: .)

= L

_— —

atitis in this layered level where
Architectural styles (Principles)

) Design Patterns
are at theory level, Architectural \ S e

Examples: GOF Patterns, Strategy, Factory

patterns are at overall solution
level and design patterns are at
the code level of implementation.

!}! AUTODESK UNIVERSITY 2015 2
/

Applying Design Patterns to AutoCAD® .NET application development

Getting Started

Using “Design Patterns” does not require any additional tools than used in day-to-day application
development or any extraordinary programming capabilities.

Using “Design Patterns” will require knowledge of object-oriented programming and an understanding
to definitions of terms like data types, polymorphism, interface and inheritance.

Encapsulation

Polymorph|sm
Abstraction

- DeS|gn Patterns
Abstract Class

Object Oriented Programming

The general description of what “Design Patterns” are often refers to them as reusable software
solutions to recurring problems that have been time tested. One of the main advantages of learning
“Design Patterns” is that a developer needs to learn or develop a better understanding of Object
oriented programming techniques.

¢ AUTODESK UNIVERSITY 2015 3
/

Applying Design Patterns to AutoCAD® .NET application development

Getting Started continued...

Data types: A programming classification identifying various types of data. Types are defined for every
variable, constant and expression that evaluates to a value. Programs use built-in types from the .NET
framework or referenced class libraries as well as user defined types.

Samples: int iCount = @;

bool bCheck = false;

string pathName = string.Empty; Datatypesargstandard

string pathFullName = string.Empty; system types (int, bool, etc.),

RXObject objRXEnt = dbObj; referenced API
types(RXObject) and defined

doSomething doIt = new doSomething(); classes (dosomething).

public class doSomething

{

}

Polymorphism: A programming concept that provides the ability of objects to take on multiple types.
Polymorphism can be static where the response to a function is determined at compile time or it can be
dynamic where it is determined at runtime.

Static Overload Sample:
public class Overloaded

{
public void Add(string vall, string val2)
{
//do something
}
public void Add(int vall, int val2)
{
//do Something
) } The ADD method is overloaded,
public class mainOverload with different arguments.
{
public void doOver()
{
Overloaded obj = new Overloaded();
obj.Add("One", "Two");
obj.Add(1, 2);
}
}

Dynamic Sample (accomplished by method overriding):
public class Base

{
public virtual void Show()
{
//do Something
}
}

The Show method is overridden
from the inherited Base class.

@ AUTODESK UNIVERSITY 2015 4

Applying Design Patterns to AutoCAD® .NET application development

public class Derived : Base

{

public override void Show()

{

//do something different than Base

}

}
public class main
{

public void useDerived()

{ The first Show method
B;S.esﬁbj - new Base(); would use the Base class
obj.show(); and second show is from
obj = new Derived(); Derived class.
obj.Show();

}

}

Inheritance: An object or class can be based on another object or class. Inheritance allows creating new
classes that reuse, extend, and modify the behavior that is defined in other classes. A class that is

inherited is called the base class, and the class that inherits is called the derived class.
public class Shape

{
public double width {set; get;}
public double height {set; get;}
public double thick {set; get;}
}
public interface WeightCalc
{
double getWeight(double volume); The Shape class and
} . .
public class Rectangle : Shape, WeightCalc YVmghtCaklnteﬁaceare
{ inherited by Rectangle class.
public double getVolume()
{
return (width * height * thick);
}
public double getWeight(double volume)
{
return volume * 0.283;
}
}

@ AUTODESK UNIVERSITY 2015 5

Applying Design Patterns to AutoCAD® .NET application development

Getting Started continued...

Interface: An interface contains the signatures of methods, properties, events or indexers. Classes that
implement an interface must implement the members of the interface that are specified in the interface
definition.

public interface WeightCalc WeightCalc is an

{ interface with a single
double getWeight(double volume); method getWeight
}

Encapsulation: The process of binding data members (variables, properties) and functions (methods)
into a single unit.

public class Size

{ . .
private double Length = o; _Length variable is encapsulated
public double Length in the Size class and its value is
{ returned and set with the Length
Eet property.
_Length = value;
}
get
{
return _Length;
}
}
}

Another advantage of object-oriented programming is the ability to design for cod reuse. Two ways of
reusing code are with inheritance implementation (IS-A relationship) and with object composition (HAS-
A relationship).

IS-A Relationship: This can be accomplished with Class inheritance or Interface inheritance.

public interface auEntity

{
void drawEntity();
) auCircle

public class auCircle : auEntity inherits from

{ auEntity
public auCircle()

{

[@/’ AUTODESK UNIVERSITY 2015 6

Applying Design Patterns to AutoCAD® .NET application development

// Construct and collect data

}
public void drawEntity()
{

//Do entity creation
}

HAS-A Relationship: This is done by using instance variables that reference other objects.

public class MakeEntity
{ MakeEntity

public auCircle thisEntity; .
creates an instance of

?ublic MakeEntity() auCircle

thisEntity = new auCircle();
//do other data collection and property setting
thisEntity.drawEntity();

interface
auEntity

Class Class
MakeEntity auCircle

5, ¢ AUTODESK UNIVERSITY 2015 7
/

Applying Design Patterns to AutoCAD® .NET application development

Unified Modeling Language

Each of the following pattern has a Unified Modeling Language (UML) class diagram. UML is a universally
accepted way of describing software in diagrammatic form. The diagrams in this handout use these UML

features.

UML diagram notation

Class
-attribute
+operation()
Class : Types and parameters

<<interface>>
IClass

Interfaces and Abstract classes

o
text

Desc l'iptiVE: Text

Package grouping of classes and interfaces

!}/! AUTODESK UNIVERSITY 2015

Inheritance : B inherits from A

A
A

B

Realization : B implements A

A— B
Association : A and B call and access
each other's elements.

B

Association (one way) : A can call and access
B's elements, but B cannot access
A's elements.

A B

Aggregation: A has a B, and B can out live A.

A ¢—— B

Compaosition : A has a B, and B depends on A.

Applying Design Patterns to AutoCAD® .NET application development

Understanding where and why to use design patterns

Using Design patterns can shorten the development process and help prevent issues that can cause
major problems. Getting started with using design patterns should be to learn and experiment with
implementing as many patterns as possible and never approach a software design with trying to fit in
the use of a particular design pattern.

Creational Design Patterns
Provide ways to instantiate single objects or groups of related objects.

¢ Abstract Factory
The abstract factory pattern is used to provide an interface for a group of similar factories or
dependent objects without specifying the concrete classes. The client creates a concrete
implementation of the abstract factory and then uses the interface of the factory to create the
concrete objects. The client doesn't know which concrete objects it gets from the factories,
because it uses only the interfaces of the products.

Using an abstract factory pattern is a “super” factory that produces objects that follow a general
pattern and at runtime the factory is paired with concrete factories to produce objects that
follow the pattern of the abstract factory.

The abstract factory pattern extends the factory design pattern that allows creating objects
without being concerned about the actual classes of the objects being created.

Use:
* Creation of independent system for the representation of its products.
* Configured system with multiple family of products.
* Family of related product objects to be used together.
* To expose the interface, but not the implementation of a class library of products.

Participants:

Abstract Factory UML
* Abstract Factory
¢ Concrete Factory
. -a: |ProductA
Abstract Product ot
* Concrete Product '

* (Client

<<interface>>
IFactory

| |
SESamsssy sasimenenney

I
1
|
|
i
1
|
L

¢ AUTODESK UNIVERSITY 2015 9
/

Applying Design Patterns to AutoCAD® .NET application development

e Builder
The builder pattern is used to separate the creation of complex objects from its representation
to enable the construction process to create different representations. A director class is used to
control the construction procedure.

The builder pattern builds the complex objects with a step by step process, an interface defines
the steps for the Builder object and a director class controls the object creation process.

When an application needs to create an object which has to be constructed using many
different objects, the client code gets cluttered with the details of the objects that need to
be assembled to create the resulting object.

The builder pattern defines a way to separate the builder object from its construction. The same
construction method can create different representations of the object.

Use:
* Creation of an object that is independent of its parts.
* Construction to allow for different representations.

Participants:

« Builder Builder UML

* Concrete builder

* Director <<interface>>
Product +BuildPart()
+GetResult(): Product

A
\

/

T

[Drector |
i +BuildPart()

geenimct(: Rroduct +GetResult(): Product

Interface BuildPart] | Product |

¢ Factory Method
The factory method pattern is used to defer instantiation with class constructors replaced into
subclasses. The process of object generation is abstracted so that the type of the object
instantiated is determined at runtime. An interface is defined for creating an object, but the
subclasses decide which class to instantiate.

In the factory method pattern, the object is created without exposing the creation logic to the
client and uses a common interface for reference to created objects.

The factory method pattern uses inheritance, as object creation is delegated to subclasses that
implement the factory method to create objects.

¢ AUTODESK UNIVERSITY 2015 10
/

Applying Design Patterns to AutoCAD® .NET application development

The factory method pattern can make a design a little more complicated, but also makes it more
customizable.

The factory method pattern is similar to abstract factory pattern but without the emphasis on
groups and families of factories.

Use:
* The class needs to create objects that it cannot anticipate.
* The class needs its subclasses to specify the objects it creates.
* The class needs to delegate the responsibility to subclasses.

Participants:

* Product Factory Method UML
* Concrete Product .
° Creator product=creator.FactoryMethod()]

* Concrete Creator :

ConcreteCreator

+FactoryMethod(): Product

¢ Prototype
The prototype pattern is used to instantiate new object by copying the properties of an existing
object which creates an independent copy. This is used when the creating a new object is
prohibitive for the application.

Use:
* To create Instances of objects that are specified at run-time.
* To avoid creation of subclasses in the client.
* To avoid creating a new object.
* To create instances of a class to manage the state of the class.

Participants:
¢ Prototype

¢ Concrete Prototype
* Client

+Clone!

Prototype UML

¢ AUTODESK UNIVERSITY 2015 11
/

Applying Design Patterns to AutoCAD® .NET application development

¢ Singleton
The singleton pattern is used to ensure that only one instance of a particular class is ever
created and provides access to the object. All further references to objects of the singleton class
refer to the same underlying instance.

This is useful when only one object is needed in the application or where multiple objects could
contain mismatched property data.

The singleton pattern is often used in scenarios where it is not beneficial which introduces
unnecessary restrictions in situations where a single instance of a class is not needed.

Use:
* There must be only one instance of a class.
* The instance needs to be accessible from a known point in the application.
* The instance needs to be extended and clients can access without code change.

Participants:

* Singleton Singleton UML

Singleton

-instance : Singleton

-Singleton()
+Instance() : Singleton

Structural Patterns
Provide ways to define relationships between classes or objects.

e Adapter
The adapter pattern is used to convert the interface of a class into an interface the client
expects. It allows incompatible types to work together by wrapping an existing class with a new
interface that supports the interface required by the client.

The adapter pattern is used when an existing component may offer functionality that needs to
be used, but its interface is not compatible with the design of the system currently being
developed.

The adapter pattern can help when reusing existing old components and designing new

components for an application. There are always issues and things that are not quite right
between the old and the new components.

¢ AUTODESK UNIVERSITY 2015 12
/

Applying Design Patterns to AutoCAD® .NET application development

Use:
* To use an existing class that its interface does not match your needs.
* To create a reusable class to make it compatible.
* To adapt the interface of a parent class.

Participants:

e Target

e Client Adapter UML

* Adaptee

° Adagter <<interface>>

ITarget
+Request()
A\

A

|
Request() Invok Adapter Adaptee
SpecificRequest() —-1+Request() +SpecificRequest()

¢ Bridge
The bridge pattern is used to separate an abstraction from its implementation, providing a way
that the implementation details can vary without modifying the abstraction.
Use:
* To avoid permanent binding between an abstraction and its implementation.
* The abstraction and its implementation should be extensible by sub classing.
* Changing the implementation should have no impact on its clients.
* To share an implementation among multiple objects.

Participants: .
* Abstraction Bridge UML

* Refined Abstraction

. Abstraction <<interface>>
implementer E— i — 1

* Concrete Implementer +Operation() +Operationimp()

Request() Invokes™] ImplementationA| |ImplementationB
SpecificRequest() +Operationlmp() +Operationimp()

¢ AUTODESK UNIVERSITY 2015 13
/

Applying Design Patterns to AutoCAD® .NET application development

e Composite
The composite pattern is used to compose objects into tree structures to represent whole-part

hierarchies. Composite lets clients treat individual objects and compositions of objects
uniformly.
Use:

* Torepresent part-whole hierarchies of objects.

* To treat all objects in the structure uniformly.

Participants:

* Component Composite UML
* Leaf

* Composite

* Client

<<interface>>
<
IComponent For each component

+Operation() call its operation

A\

+Operation() CH-list: IComponent
+Operation()

e Decorator
The decorator pattern is used to attach additional responsibilities to an object dynamically or

alter the functionality of objects at runtime by wrapping them in an object of a decorator class.
This provides a flexible alternative to using sub-classing or inheritance to modify behavior.

Use:
* To add responsibilities to objects dynamically and transparent.
* Ability to remove added responsibilities.
* When extending by sub classing is not possible or impractical.

Participants: Decorator UML
¢ Component
* Concrete component
* Decorator
* Concrete decorator ea

Comporert
+Operation() -addedState >
-component: IComponen
+Operation() — Calls the stored N
+AddedBehavior() components operation

¢ AUTODESK UNIVERSITY 2015 14
/

Applying Design Patterns to AutoCAD® .NET application development

¢ Facade
The facade pattern is used to define a unified interface to a set of interfaces in a subsystem.
Facade wraps a complicated subsystem with a simpler interface that makes the subsystem
easier to use.

Use:
* To create a complex system easier to use and understand.
* To make a system library more readable
* To add layers to a sub system.

Participants:
P Facade UML
* Facade

* Sub System classes.

-a: SubsystemA
-b: SubsystemB

-c: SubsystemC SubsystemB
~operabort) | [|

+Operation2()
SubsystemC

¢ Flyweight
The flyweight pattern is used for sharing to support large numbers of fine-grained objects
efficiently.

Use:
* For applications that have many objects.
* Minimize memory usage by sharing data with objects.
* Groups of objects can be defined with shared objects
e Application is not dependent on object identity.

Participants:

* Flyweight Flyweight UML

* Concrete Flyweight

* Unshared Concrete [*unSharedState()_>—|-flyweights: Dicionary k>
Flyweight
* Flyweight Factory
. i
Client =

+Operation() computed at runtime

¢ AUTODESK UNIVERSITY 2015 15
/

Applying Design Patterns to AutoCAD® .NET application development

e Proxy
The proxy pattern is used to provide a surrogate or placeholder object to control access to it.
The proxy pattern provides an extra level of indirection to support distributed, controlled, or
intelligent access.

The proxy design pattern provides a way to create a wrapper class to provide a simple interface
to existing objects. The proxy wrapper class can be used for adding additional functionality to an
existing object without changing the code of the existing object.

Use:
* Add control of security to an existing object.
* Making complex objects easier to access.
* To provide an interface for a remote resource.
* To create extensive memory objects on demand.
* Add thread-safety to an existing class.

Participants:
* Proxy

. Subject Proxy UML

* Real Subject
RimSRRARRAR

/\
=

|
Rouies requesisy
+Request() N +Request() -—- to the Subject

¢ AUTODESK UNIVERSITY 2015 16
/

Applying Design Patterns to AutoCAD® .NET application development

Behavioral Patterns
Provide communication between classes and objects.

Behavioral object patterns use composition instead of inheritance and behavioral class patterns use
inheritance between classes, examples of behavioral class patterns are the “Template Method” and
“Interpreter”.

¢ Chain of Responsibility
The chain of responsibility pattern is used to avoid coupling the sender of a request to its
receiver by giving more than one object a chance to handle the request. Chain the receiving
objects and pass the request along the chain until an object handles it.

Use:
* When more than one object can handle a request.
* Toissue a request to an object without specifying the receiver.
* Objects to receive a request are specified dynamically.
* When loose coupling of objects is desired.

Participants:

 Handler Chain of Responsibility UML
e C te Handl
oncrete Handler s
* Client B > IHandler
Calls successor v

+Request() if necessary

e Command
The command pattern is used encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log requests, and support undoable
operations. The command may then be executed immediately or held for later use.

A command method can also be thought of as a Transaction or Action pattern.

Use:
* Parameterize objects by the command to be performed.
* Object Oriented replacement for callbacks.
* Execute requests at different times or setup queues.
* Allows creating an undo

¢ AUTODESK UNIVERSITY 2015 17
/

Applying Design Patterns to AutoCAD® .NET application development

Participants:
* Command Command UML
* Concrete Command T
e (Client [T S+Execute() >
* Invoker

I
+Action() K —-- receiver.Action()
- +Execute()

¢ Interpreter

The interpreter pattern is used to define a representation for a language or notations grammar
with an interpreter that uses the representation for instructions to interpret sentences in the
language or notation.

Use:
* Tointerpret grammar, best used when the grammar is simple.
* Best when efficiency is not a critical concern
* Used with specified query languages like SQL

Participants:
* Abstract Expression
* Terminal Expression Interpreter UML

* Nonterminal Expression

¢ Context

* C(Client

Terminal <{ Nonterminal

+Interpreter() +Interpreter()

¢ AUTODESK UNIVERSITY 2015 18
/

Applying Design Patterns to AutoCAD® .NET application development

¢ Iterator
The iterator pattern is used to provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

Use:
* Access an objects contents without exposing its underlying representation.
* Provide an interface to traverse the objects structure.

Participants: lterator UML

* lterator

* Concrete Iterator pp
* Aggregate [oollecion , |- __IEnumerable
* Concrete Aggregate +GetEnuTerat0r()

LA
for each s in structure Collection
yield return s -structure=supplied

for each s in structu
yield return s

¢ Mediator
The mediator pattern is used to define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from referring to each other explicitly,
and it lets you vary their interaction independently.

Use:
* When objects communicate to simplify the understanding of the dependencies.
* Toreuse an object that communicates with other objects.
* To distribute a behavior between classes without sub classing.

Participants:
* Mediator .
e Concrete Mediator Mediator UML

* Colleague classes E5IEE
-mediator _(>—— -Respond():Callback

+Receive() +Send()
+Send() +SignOn(Callback)

Responds calls V]
mediator send Receive back

¢ AUTODESK UNIVERSITY 2015 19
/

Applying Design Patterns to AutoCAD® .NET application development

¢ Memento
The memento pattern is used to capture and externalize the current state of an object's internal
state and store it in such a manner that it can be restored at a later time without breaking the
rules of encapsulation.
Use:
* The state of an object needs to be saved so that it can be restored later.
* When obtaining the state would expose the implementation.

Participants:

CUIICE Memento UML
* Originator

+ Caretaker

—{+save(
+Restore()

¢ Observer
The observer pattern defines a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.
Use:
* When an abstraction has two aspects and they are dependent on each other.
* When an object changes and multiple objects need to be notified or changed.
* When objects need to notify other objects.

Participants:

* Subject Observer UML

®* QObserver

* Concrete Subject Notify calls Subject
e Concrete Observer iz ~state IObserver
-Notify() +Update()l

+Attach() \

+Detach() T
|

ubject
tate

+Update()

¢ AUTODESK UNIVERSITY 2015 20
/

Applying Design Patterns to AutoCAD® .NET application development

e State
The state pattern is used to alter the behavior of an object when its internal state changes. The
object will appear to change its class. The pattern allows the class for an object to apparently
change at run-time.
Use:
* When an object depends on its state and the state changes at run-time.
* To treat the object’s state as an independent object.

Participants: State UML

¢ Context
° State <<interface>>
* Concrete State Sub Classes -state: |State IState
+Request() -context: Context
; +Handle(
invokes “
state.Handle() r q
| |
| |
StateA StateB
+Handle() +Handle()
e Strategy

The strategy pattern defines a family of algorithms, encapsulate each one, and make them
interchangeable. The strategy pattern lets the algorithm vary independently from the clients
that use it. It captures the abstraction in an interface and hides the implementation details in
derived classes.
Use:

* When a class needs to be configured for multiple behaviors.

* When different variations of an algorithm are required.

* To avoid exposing complex structures.

* When many conditionals are required they can be moved into a strategy class.

Participants:

¢ Strategy
¢ Concrete Strategy Strategy U M L
¢ Context

<<interface>>
IStrategy
+Algorithm()

| |
StrategyA StrategyB
+Algorithm() +Algorithm()

¢ AUTODESK UNIVERSITY 2015 21
/

Applying Design Patterns to AutoCAD® .NET application development

¢ Template Method
The template method pattern is used to define the skeleton of an algorithm in an operation,
deferring some steps to client subclasses. The template method lets subclasses redefine certain
steps of an algorithm without changing the algorithm's structure.
Use:
* Toimplement an algorithm and let the sub classes implement the behavior.
* To avoid code duplication in sub classes.
* To control sub class extensions.

Participants:

* Abstract Class Tem plate U ML

* Concrete Class Algorithm <<interface>> AnyClass
+TemplateMethod() F-—--> IPrimitives — +Operation()
|

| +Operation()

Calls
Operation()

e Visitor
The visitor pattern is used to represent an operation to be performed on the elements of an
object structure. The visitor pattern allows defining a new operation without modifying the
operating classes.
Use:
* To operate on objects of an object structure that depend on other classes.
* To define related operations in a single class to keep them together.
* When classes defining objects rarely change.

Participants:
* Visitor Visitor UML
* Concrete Visitor
* Element
¢ Concrete Element
* Object Structure

+VisitorMethod1() +VisitorMethod2()

ObjectStructure

ElementA ElementB
+OperationA() +OperationB()

¢ AUTODESK UNIVERSITY 2015 22
/

Applying Design Patterns to AutoCAD® .NET application development

Applying design pattern code and refactoring existing code for design patterns

When starting a new project it would be good practice to setup and design using design patterns, but
often projects evolve from some test code or existing code that often does not use design patterns.
Also, it is seldom beneficial to start a project with the attitude that it will be structured with a parrticular
set of design patterns. This approach will often be unsucessful due to too much effort required to make
a desired pattern fit in unknown code. It is often better to design the code in the same way that you
have always worked and then refactor. As design patterns are used more often in the code, they
become easier to implement.

To refactor code to use a design pattern is no different than refactoring other existing code that needs
cleanup or added functionality. The primary difference is in building the structure to fit within the
desired pattern. To do this requires a good understanding of object oriented programming and of the
patterns that are being used.

After spending some time learning different design patterns, the approach to refactoring existing code
should be the same as with any refactoring is to break the code into simpler classes and methods, then
determine what design pattern best suits for a solution. Then build the generic framework of the
selected design pattern and move the existing code into the new structure.

When to use design patterns?

This is a difficult question to answer, since different patterns have different uses it would require
understanding the different patterns and the existing code. Typically when something is being done
requiring a lot of conditions there are several design patterns that can be used. Also, if the project is not
reusing code or typical code is being replicated there are several patterns that could simplify reuse of
code.

How to learn the different design patterns?

To learn different design patterns requires a lot of time, there are several websites with code samples
and definitions. The above descriptions of the patterns were derived from several websites and the
Design patterns book mentioned above. Would suggest taking a few patterns that fit the type of code
that you typically do, learn them and use them wherever they apply, then keep expanding learning new
patterns.

Why would | change existing code to use design patterns?

The main reason to refactor existing code is for readability and reuse. As the code is refactored to take
advantage of design patterns it will be easier to maintain and add additional functionality. Keep in mind
one of the main aspects of design patterns which is : “Design patterns are ways to write well defined
solutions to problems that someone else has solved”.

'A Q/k AUTODESK UNIVERSITY 2015 23

Applying Design Patterns to AutoCAD® .NET application development

How design patterns can help you build better applications

Design patterns provide defined structures that assist in solving problems. When working on a solution
for a problem, there are many variations that need to be considered for the solution to problems to
determine a design pattern that fits. The problem will often need to be broken into smaller parts to find
a solution using a design pattern. Learning design patterns is an important step to building better
applications due to the time tested solutions that design patterns provide.

Design patterns provide a common vocabulary and improve code readability for developers that are
familiar with the patterns making maintenance and adding functionality easier and faster. In the
development process, if a developer wants to use a particular design pattern for a problem there is a
common point of reference to discuss if it will solve the problem without implementing the solution
first. Programmers and developers encounter problems and have used design pattern 'solutions'.

Design Patterns the good:

* Readability: Using design patterns creates code that is more understandable to all developers
who have taken the time to learn design patterns. The code is easier to understand due to
design patterns being defined with standard object-oriented programming techniques instead of
each developer doing it in his own way that often does not use well defined techniques.

* Maintainability: Using design patterns makes the code easier to maintain because it is more
understandable and again will use standard object-oriented programming techniques. This
makes changing and adding additional functionality much easier.

¢ Communication: Design patterns provide a common vocabulary and assist in communicating
design goals amongst different programmers and developers.

¢ Intention: The code is easier to understand when another programmer or developer is learning
the code.

* Re-use: Using common solutions to common problems can assist in making the code easier to
use for other solutions. Design patterns can help prevent small problems that can become major
problems.

* Less code: Code can be derived for common functionality from common base classes.

* Time Tested: They have been used and tested to provide proven and sound solutions.

Design patterns the bad:

* Levels of indirection: Many design patterns provide extra levels of indirection making the code
more complex and result in the code not being more readable and maintainable.

* Learning: As with other programming techniques, learning when and how to use design patterns
can take some effort. When learning design patterns, they are often abused and used where
they do not fit. Sometimes simple tasks do not require the extra work of being solved by using a
design pattern.

* Interpretations: In the learning process and from misunderstanding the usage of design
patterns can be interpreted in different ways and can result in a usage that is not a good fit.

* More Code: Some design patterns require multiple layers of sub classing and can sometimes
result in extra code being required to satisfy the requirements of using the design pattern.

* Wrong Use: A good example is that the singleton pattern is often used when a static class or
variable would be acceptable. As with other techniques in an effort to use a newly learned
technique, some programmers and developers will use design patterns where they may not fit.

¢ AUTODESK UNIVERSITY 2015 24
/

Applying Design Patterns to AutoCAD® .NET application development

Have sample code using design patterns that can be immediately used in your applications.
Please download the applications that have been uploaded to support this class.

They are C# applications to illustrate using different design patterns for AutoCAD plugins.

Design pattern links used for reference to create this document.

The following links were used in creating this document and provide good reference for learning design
patterns.

Samples and descriptions:
https://en.wikipedia.org/wiki/Design_Patterns
https://sourcemaking.com/design_patterns
http://www.dofactory.com/net/design-patterns
http://www.blackwasp.co.uk/GofPatterns.aspx

http://code.tutsplus.com/articles/a-beginners-guide-to-design-patterns--net-12752

! ?/k AUTODESK UNIVERSITY 2015 25

