
Join the conversation #AU2015

Applying Design Patterns to AutoCAD .NET
Application Development
James E. Johnson
Sr. Application developer
Twitter : @jamescad

Design patterns provide reusable solutions to common
software issues that occur frequently when doing
software design. This class is an introduction for .NET
developers on how to use design patterns applications.
The 23 common design patterns known as ‘GoF’ patterns
are considered the base for other design patterns. This
class will demonstrate how to use some common
patterns with AutoCAD software add-in code samples.

Class summary

#AU2015

At the end of this class, you will :
§ Have a basic understanding of where and why to use design patterns.

§ Have seen how to apply design pattern code and refactoring existing code
for design patterns.

§ Know how design patterns can help you build better applications

§ Have sample code using design patterns that can be immediately used in
your applications.

Key learning objectives

#AU2015

Introduction to Design Patterns

#AU2015

§ Design Patterns are generally described as reusable
software solutions to recurring problems in application
development.

§ Consider Design Patterns as “Recipes” or “Templates”
for solving software development problems.

Introduction

§ Design Patterns are an outline, or considered a “best”
or “preferred” way to solve a problem.

§ They have evolved from the need to solve the same
problem by many people over time.

§ They can be considered a common frame of reference
on how to solve a problem.

Introduction

§ The book :
“Design Patterns: Elements of
Reusable Object- Oriented Software
(Addison-Wesley)” by Erich Gamma,
Richard Helm, Ralph Johnson, and
John Vlissides outlines and describes
23 commonly used design patterns.

Introduction

Introduction

§ The authors of that book are commonly referred to as
the “Gang of Four (GOF)”.

§ In the 20+ years since that book was published there
have been numerous additional books published.

§ There are many websites and “youtube” videos that
have been dedicated to discussing and showing
sample code for Design Patterns.

§ The (GOF) patterns are considered the foundation for
other patterns and are categorized into three types:

§ Creational Patterns
§ Structural Patterns
§ Behavioral Patterns

Introduction

§ Creational Patterns: Provide ways to instantiate
single objects or groups of related objects.

§ Defined patterns are:
• Abstract Factory
• Builder
• Factory Method
• Prototype
• Singleton

Introduction

§ Structural Patterns: Provide ways to define
relationships between classes or objects.

§ Defined patterns:

Introduction

• Adapter
• Bridge
• Composite
• Decorator

• Facade
• Flyweight
• Proxy

§ Behavioral Patterns: Provide communication between
classes and objects.

§ Defined patterns:

Introduction

• Chain of Responsibility
• Command
• Interpreter
• Iterator
• Mediator
• Memento

• Observer
• State
• Strategy
• Template Method
• Visitor

Getting Started with Design Patterns

#AU2015

§ Does not require any additional tools.
§ Does not require any extraordinary programming skill

or capabilities.

§ Requires knowledge of Object Oriented Programming.
§ Requires an understanding to definitions of terms like

data types, polymorphism, interface and inheritance

Getting Started with Design Patterns

§ Data types: A programming classification identifying
various types of data.

§ Polymorphism: A programming concept that provides
the ability of objects to take on multiple types.

§ Inheritance: An object or class can be based on
another object or class. Inheritance allows creating
new classes that reuse, extend, and modify the
behavior that is defined in other classes.

Getting Started with Design Patterns

§ Interface: An interface contains the signatures of
methods, properties, events or indexers.

§ Encapsulation: The process of binding data members
(variables, properties) and functions (methods) into a
single unit.

§ IS-A Relationship: This can be accomplished with
Class inheritance or Interface inheritance.

§ HAS-A Relationship: This is done by using instance
variables that reference other objects.

Getting Started with Design Patterns

§ Design patterns can shorten the development process.

§ Prevent issues that can cause major problems.

§ Learn and experiment with creating sample code for as
many design patterns as possible.

§ Never approach a software design with trying to fit it
into using a ‘particular’ design pattern.

Understanding where and why to use design patterns

Look at Code examples…

#AU2015

§ The Abstract Factory is a Creational Design Pattern

§ The abstract factory pattern is used to provide an
interface for a group of similar factories or dependent
objects without specifying the concrete classes.

§ Sample code…

Abstract Factory Pattern

§ The Factory Method Pattern is a Creational Design
Pattern.

§ The factory method pattern is used to defer
instantiation with class constructors replaced into
subclasses.

§ Sample Code…

Factory Method Pattern

§ The Builder Pattern is a Creational Design Pattern.

§ The builder pattern is used to separate the creation of
complex objects from its representation to enable the
construction process to create different
representations.

§ Sample Code…

Builder Pattern

§ The Strategy pattern is a Behavioral Pattern.

§ The strategy pattern defines a family of algorithms,
encapsulate each one, and make them
interchangeable.

§ Sample Code…

Strategy Pattern

§ The Command Pattern is a Behavioral Design Pattern,

§ The command pattern is used encapsulate a request
as an object, thereby letting you parameterize clients
with different requests, queue or log requests, and
support undoable operations. The command may then
be executed immediately or held for later use.

§ Sample Code…

Command Pattern

§ The Singleton Pattern is a Creational Design Pattern.

§ The singleton pattern is used to ensure that only one
instance of a particular class is ever created and
provides access to the object.

§ Often considered an Anti-Pattern due to overuse and
that it makes the instance in a ‘Global’ state that can
cause problems in some applications.

Singleton Pattern

§ Starting a new project using design patterns is often
difficult as projects evolve from test code or existing
code that often does not use design patterns.

§ Create projects the same way that you have always
worked and then refactor using design patterns.

§ Do Not select a pattern and start designing around that
pattern, this will often produce undesirable outcome.

Applying design pattern code and refactoring
existing code for design patterns

§ Readability: creates code that is better understood.
§ Maintainability: makes the code easier to maintain.
§ Communication: provides a common vocabulary.
§ Intention: code is easier to understand.
§ Re-use: common solutions to common problems.

assists in code that is easier to use for other solutions.
§ Less code: derived for common functionality.
§ Time Tested: provides proven and sound solutions.

How design patterns can help you build better
applications

§ Along with handout several sample applications that
have been demonstrated have been copied for
download.

§ Samples are basic C# and are not intended for
deploying without additional refinement.

Have sample code using design patterns that can be
immediately used in your applications.

Thanks for Attending…

#AU2015

§ Via the Survey Stations, email or mobile device.

§ AU 2016 passes awarded daily!

§ Give your feedback after
each session.

§ Give instructors feedback
in real-time.

Be heard! Provide AU session feedback.

#AU2015

Forget to take notes? No problem!
After AU visit:
AutodeskUniversity.com

Click on My AU to find:

§ Class Recordings
§ Presentations
§ Handouts

All of your sessions will be there
to enjoy again and again.

#AU2015

Instruction Manuals Outdated?

Visit:

AutodeskUniversity.com

Click on My AU to start
building your own desk
reference (with materials
from this decade).

#AU2015

Learn something worth sharing?
After AU visit:

AutodeskUniversity.com

Click on My AU to share your AU
experience with:

§ Colleagues
§ Peers
§ Professionals

Save hundreds of sessions worth sharing.

#AU2015

Too many sessions, too little time?
After AU visit:

AutodeskUniversity.com

§ Recorded sessions
§ Presentations and handouts
§ Key learnings

Don’t miss a second! Find hundreds
of sessions waiting for you.

#AU2015

§ Seek answers to all of your technical product
questions by visiting the Answer Bar.

§ Open daily 8am-10am and Noon-6pm and
located just outside of Hall C on Level 2.

§ Staffed by Autodesk developers, QA,
& support engineers ready to help
you through your most challenging
technical questions.

More Questions? Visit the AU Answer Bar

#AU2015

Autodesk is a registered trademark of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors
that may appear in this document. © 2015 Autodesk, Inc. All rights reserved.

